• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 1, 2242001 (2022)
[in Chinese]1、2, [in Chinese]1, [in Chinese]3, [in Chinese]3, [in Chinese]3, [in Chinese]4, [in Chinese]5, [in Chinese]6, [in Chinese]1, [in Chinese]1、2, [in Chinese]1、2, and [in Chinese]1、2、*
Author Affiliations
  • 1School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066004, P. R. China
  • 2Hebei Key Laboratory of Micro-Nano Precision, Optical Sensing and Measurement Technology, Qinhuangdao, Hebei 066004, P. R. China
  • 3Department of Ophthalmology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066004, P. R. China
  • 4Department of Ophthalmology, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, Hebei 066004, P. R. China
  • 5Tangshan Maternal and Children Hospital, Tangshan, Hebei 063000, P. R. China
  • 6Biomedical Information Engineering Lab, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan
  • show less
    DOI: 10.1142/s1793545822420019 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Automatic segmentation of foveal avascular zone based on adaptive watershed algorithm in retinal optical coherence tomography angiography images[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2242001 Copy Citation Text show less
    References

    [1] J. M. Provis, T. Sandercoe, A. E. Hendrickson, "Astrocytes and blood vessels define the foveal rim during primate retinal development," Invest. Ophthalmol. Vis. Sci. 41, 2827–2836 (2000).

    [2] B. F. Zeffren, R. A. Applegare, A. Bradley, W. A. V. Heuven, "Retinal fixation point location in the foveal avascular zone," Invest. Ophthalmol. Vis. Sci. 31, 2099–2105 (1990).

    [3] G. H. Bresnick, R. Condit, S. Syrjala, M. Palta, A. Groo, K. Korth, "Abnormalities of the foveal avascular zone in diabetic retinopathy," Arch. Ophthalmol. 102, 1286–1293 (1984).

    [4] O. Arend, S. Wolf, A. Harris, M. Reim, "The relationship of macular microcirculation to visual acuity in diabetic patients," Arch. Ophthalmol. 113, 610–614 (1995).

    [5] M. Díaz, J. Novo, P. Cutrín, F. Gómez-Ulla, M. G. Penedo, M. Ortega, A. S. Lewin, "Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images," PLoS ONE 14, e0212364 (2019).

    [6] S. Henke, I. Papapostolou, B. Heimes, A. Lommatzsch, D. Pauleikhoff, G. Spital, "OCT-Angiography in diabetic maculopathy: Comparison between microaneurysms and the foveal avascular zone with fluorescein angiography," Ophthalmologe 115, 941–947 (2018).

    [7] R. Linderman, A. E. Salmon, M. Strampe, M. Russillo, J. Khan, J. Carroll, "Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: Segmentation and scaling," Transl. Vis. Sci. Technol. 6(3), 16 (2017).

    [8] H. Li, K. Liu, T. Cao, L. Yao, Z. Zhang, X. Deng, C. Du, P. Li, "High performance OCTA enabled by combining features of shape, intensity, and complex decorrelation," Opt. Lett. 46(2), 368–371 (2021).

    [9] H. Li, K. Liu, L. Yao, X. Deng, Z. Zhang, P. Li, "IDOCTA: OCT angiography based on inverse SNR and decorrelation features," J. Innov. Opt. Health Sci. 14(1), 2130001 (2021).

    [10] A. Shahlaee, M. Pefkianaki, J. Hsu, A. C. Ho, "Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography," Am. J. Ophthalmol. 161, 50–55 (2015).

    [11] R. Chen, L. Yao, K. Liu, T. Cao, H. Li, P. Li, "Improvement of decorrelation-based OCT angiography by an adaptive spatial-temporal kernel in monitoring stimulus-evoked hemodynamic responses," IEEE Trans. Med. Imaging 39(12), 4286–4296 (2020).

    [12] M. Lupidi, F. Coscas, C. Cagini, T. Fiore, E. Spaccini, D. Fruttini, G. Coscas, "Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography," Am. J. Ophthalmol. 169, 9–23 (2016).

    [13] P. Carpineto, R. Mastropasqua, G. Marchini, L. Toto, M. D. Nicola, L. D. Antonio, "Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography," Br. J. Ophthalmol. 100, 671–676 (2016).

    [14] C. L. Spina, A. Carnevali, A. Marchese, G. Querques, F. Bandello, "Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings," Retina 37, 1636–1641 (2017).

    [15] G. N. Magrath, E. A. T. Say, K. Sioufi, S. Ferenczy, W. A. Samara, C. L. Shields, "Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes," Retina 37, 2102–2111 (2017).

    [16] F. Corvi, M. Pellegrini, S. Erba, M. Cozzi, G. Staurengfi, A. Giani, "Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices," Am. J. Ophthalmol. 186, 25–31 (2018).

    [17] F. Chan, Z. Mammo, M. L. Heisler, C. Bala, P. Prentasic, G. Docherty, S. Rajapakse, S. Loncaric, A. Merkur, A. Kirker, D. Albiani, M. F. Beg, M. V. Sarunic, E. Navajas, "Machine learning-assisted automated quantification of foveal avascular zone parameters and perifoveal capillary density of prototype and commercial optical coherence tomography angiography (OCT-A) platforms in healthy and diabetic eyes," Investig. Ophthalmol. Vis. Sci. 58, 827 (2017).

    [18] B. Al-Bander, W. Al-Nuaimy, B. M. Williams, Y. Zheng, "Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc," Biomed. Signal Process. Control 40, 91–101 (2018).

    [19] F. G. Holz, J. Roider, Y. Ogura, J. F. Korobelnik, C. Simader, G. Groetzbach, R. Vitti, A. J. Berliner, F. Hiemeyer, K. Beckmann, O. Zeitz, R. Sandbrink, "VEGF trap-eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study," Br. J. Ophthalmol. 97, 278–284 (2013).

    [20] Y. Lu, J. Simonett, J. Wang, M. Zhang, T. Hwang, A. M. Hagag, D. Huang, D. Li, Y. Jia, "Evaluation of automatically quantified foveal avascularzone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography," Investig. Ophthalmol. Vis. Sci. 59, 2212–2221 (2018).

    [21] M. Kass, A. Wikin, D. Terzopoulos, "Snakes: Active contourmodels," Int. J.Comput.Vis.1,321–331 (1987).

    [22] C. Sun, K. Lam, "The GVF Snake with a minimal path approach," Proc. 6th IEEE/ACIS Int. Conf. Computer and Information Science, pp. 223–228, IEEE, Piscataway (2007).

    [23] E. Hodneland, X. C. Tai, H. Kalisch, "PDE based algorithms for smooth watersheds," IEEE Trans. Med. Imaging 35, 957–966 (2016).

    [24] N. Qian, "On the momentum term in gradient descent learning algorithms," Neural Netw. 12, 145–151 (1999).

    [25] R. J. Qureshi, L. Kovacs, B. Harangi, B. Nagy, T. Peto, A. Hajdu, "Combining algorithms for automatic detection of optic disc and macula in fundus images," Comput. Vis. Image Underst. 116, 138–145 (2012).

    [26] B. Perret, J. Cousty, S. J. F. Guimaraes, D. S. Maia, "Evaluation of hierarchical watersheds," IEEE Trans. Image Process. 27(4), 1676–1688 (2017).

    [27] A. Hanbury, B. Marcotegui, "Morphological segmentation on learned boundaries," Image Vis. Comput. 27(4), 480–488 (2009).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Automatic segmentation of foveal avascular zone based on adaptive watershed algorithm in retinal optical coherence tomography angiography images[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2242001
    Download Citation