• Infrared and Laser Engineering
  • Vol. 52, Issue 10, 20230070 (2023)
Haisheng Lin1,2, Zhibo Wu2,3, Min Zheng1, Mingliang Long2..., Renfang Geng2,4, Rongzong Yu5 and Zhongping Zhang2,3|Show fewer author(s)
Author Affiliations
  • 1School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
  • 2Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
  • 3Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • 5School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/IRLA20230070 Cite this Article
    Haisheng Lin, Zhibo Wu, Min Zheng, Mingliang Long, Renfang Geng, Rongzong Yu, Zhongping Zhang. Research and application of picosecond accuracy time delay calibration for satellite laser ranging system[J]. Infrared and Laser Engineering, 2023, 52(10): 20230070 Copy Citation Text show less
    Composition and time delay distribution of satellite laser ranging system
    Fig. 1. Composition and time delay distribution of satellite laser ranging system
    Schematic diagram of ground target measurement
    Fig. 2. Schematic diagram of ground target measurement
    Schematic diagram of satellite-ground laser time transfer
    Fig. 3. Schematic diagram of satellite-ground laser time transfer
    Schematic diagram of transmission delay measurement
    Fig. 4. Schematic diagram of transmission delay measurement
    Schematic diagram of reception delay measurement
    Fig. 5. Schematic diagram of reception delay measurement
    Schematic diagram of cable delay measurement
    Fig. 6. Schematic diagram of cable delay measurement
    (a) Delay variation of the reference cable; (b) Delay variation after adding the the cable to be tested
    Fig. 7. (a) Delay variation of the reference cable; (b) Delay variation after adding the the cable to be tested
    Schematic diagram of optical delay measurement
    Fig. 8. Schematic diagram of optical delay measurement
    (a) Delay variation at point E; (b) Delay variation at point B
    Fig. 9. (a) Delay variation at point E; (b) Delay variation at point B
    Delay variation of reception delay
    Fig. 10. Delay variation of reception delay
    Range bias statistic
    Fig. 11. Range bias statistic
    ItemMaterialUnit/in (mm)
    Inner conductorSolid BC0.056 (1.42)
    DielectricFoam PE0.150 (3.81)
    Outer conductorAluminum tape0.155 (3.94)
    Overall braidTinned copper0.178 (4.52)
    Table 1. Material parameter of cable LMR-240
    Performance propertyUS (metric)Unit
    Velocity of propagation84%
    Dielectric constant1.42NA
    Time delay1.21 (3.97)ns/ft (ns/m)
    Impedance50Ω·m
    Capacitance24.2 (79.4)pF/ft (pF/m)
    Inductance0.06 (0.2)µH/ft (µH/m)
    Shielding effectiveness>90dB
    Inner conductor DC resistance3.2 (10.5)Ohms/1000 ft (/km)
    Outer conductor DC resistance3.89 (12.8)Ohms/1000 ft (/km)
    Voltage withstand1500V, DC
    Peak power5.6kW
    Operating temperature range−40/85
    Table 2. Electrical parameter of cable LMR-240
    ItemMaterialRefractive indexOptical length/mmOptical delay/ps
    Objective lens1H-ZF21.68030.22169
    Objective lens2H-K9L1.51930.42154
    Wedge lens HHH-K9L1.51913.769
    Table 3. Lens parameter
    ItemParameter
    Detection diodeLinear photodiode on Si
    Active area100 µm in diameter
    Output signals amplitude/V> +2.5
    Operating temperature/℃−50-+40
    Table 4. Linear detector related parameters
    No.ItemTime delay/psNote
    1Cable l3 (107100±2)LMR-240, 25 m
    2Linear detector outlet1(211±7)Analog signal outlet
    3Linear detector outlet2(13444±7)Square signal outlet
    4SMA-BNC Adapter(57±3)Box-box
    5Signal convertor 1(1254±4)ITR-1, 50 Ω
    6Wedge lens(69±3)H-K9L, optical 13.7 mm
    7Objective lens1(169±3)H-ZF2, thickness of center 30.22 mm
    8Objective lens2(154±3)H-K9L,thickness of center 30.42 mm
    9Optical path EH(8563±2)E-PD: 71 mm
    10Optical path HI(1967±3)590 mm
    11Optical path IF(8442±2)Optical path without two objective lens
    12Optical path HB(410±3)123 mm
    13Transmission delay−4 698-
    14Reception delay192 269-
    15Ground target to phase center(18 851±5)IF+HI
    Table 5. Time delay measurement result
    Haisheng Lin, Zhibo Wu, Min Zheng, Mingliang Long, Renfang Geng, Rongzong Yu, Zhongping Zhang. Research and application of picosecond accuracy time delay calibration for satellite laser ranging system[J]. Infrared and Laser Engineering, 2023, 52(10): 20230070
    Download Citation