• Photonic Sensors
  • Vol. 2, Issue 3, 271 (2012)
Huy NGUYEN1, Gregory W. BAXTER1、*, Stephen F. COLLINS1, Fotios SIDIROGLOU1, Ann ROBERTS2, and Timothy J. DAVIS3
Author Affiliations
  • 1School of Engineering and Science, Victoria University, PO Box 14428,Melbourne, Victoria 8001, Australia
  • 2School of Physics, The University of Melbourne, Victoria 3010, Australia
  • 3CSIRO Materials Science & Engineering, Private Bag 33, Clayton South MDC, Victoria 3169, Australia
  • show less
    DOI: 10.1007/s13320-012-0068-1 Cite this Article
    Huy NGUYEN, Gregory W. BAXTER, Stephen F. COLLINS, Fotios SIDIROGLOU, Ann ROBERTS, Timothy J. DAVIS. Modeling of Gold Circular Sub-Wavelength Apertures on a Fiber Endface for Refractive Index Sensing[J]. Photonic Sensors, 2012, 2(3): 271 Copy Citation Text show less
    References

    [1] E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A, vol. 23, no. 12, pp. 2135-2136, 1968.

    [2] D. V. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sensors and Actuators B: Chemical, vol. 121, no. 1, pp. 158-177, 2007.

    [3] P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Applied Biochemistry and Biotechnology, vol. 126, no. 2, pp. 79-92, 2005.

    [4] R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 12, no. 3, pp. 213-220, 1993.

    [5] A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, “Chemical sensing by surface plasmon resonance in a multimode optical fibre,” Pure and Applied Optics: Journal of the European Optical Society Part A, vol. 5, no. 2, pp. 227-237, 1996.

    [6] M. Piliarik, J. Homola, Z. Manikova, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sensors and Actuators B: Chemical, vol. 90, no. 1-3, pp. 236-242, 2003.

    [7] A. J. C. Tubb, F. P. Payne, R. B. Millington, and C. R. Lowe, “Single-mode optical fiber surface plasma wave chemical sensor,” Sensors and Actuators B: Chemical, vol. 41, no. 1-3, pp. 71-79, 1997.

    [8] A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sensors Journal, vol. 7, no. 8, pp. 1118-1129, 2007.

    [9] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Analytica Chimica Acta, vol. 620, no. 1-2, pp. 8-26, 2008.

    [10] O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Analytical Chemistry, vol. 80, no. 12, pp. 4269-4283, 2008.

    [11] B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Optical Fiber Technology, vol. 15, no. 3, pp. 209-221, 2009.

    [12] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667-669, 1998.

    [13] H. A. Bethe, “Theory of diffraction by small holes,” Physical Review, vol. 66, no. 7-8, pp. 163-182, 1944.

    [14] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, vol. 7, no. 6, pp. 442-453, 2008.

    [15] P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chemical Physics Letters, vol. 487, no. 4-6, pp. 153-164, 2010.

    [16] E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Optics Express, vol. 15, no. 12, pp. 7439-7447, 2007.

    [17] A. Dhawan, M. Gerhold, and J. Muth, “Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications,” IEEE Sensors Journal, vol. 8, no. 6, pp. 942-950, 2008.

    [18] Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomedical Optics Express, vol. 2, no. 3, pp. 478-484, 2011.

    [19] Lumerical Solutions, Inc., FDTD Solutions User Manual. Vancouver, BC, Canada, 2011.

    [20] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370-4379, 1972.

    [21] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.

    [22] S. M. Melle, K. Lui, and R. M. Measures, “Practical fiber-optic Bragg grating strain gauge system,” Applied Optics, vol. 32, no. 19, pp. 3601-3609, 1993.

    [23] H. K. Bal, F. Sidiroglou, S. F. Collins, and Z. Brodzeli, “Multiplexing of fibre optic reflective sensors using Bragg gratings,” Measurement Science and Technology, vol. 21, no. 9, pp. 094011 (4 pages), 2010.

    [24] H. Nguyen, “Optical fibre surface plasmon resonance sensors based on a metallic array of sub-wavelength apertures,” Ph.D. dissertation, Faculty of Health, Engineering and Science, Victoria University, 2012.

    Huy NGUYEN, Gregory W. BAXTER, Stephen F. COLLINS, Fotios SIDIROGLOU, Ann ROBERTS, Timothy J. DAVIS. Modeling of Gold Circular Sub-Wavelength Apertures on a Fiber Endface for Refractive Index Sensing[J]. Photonic Sensors, 2012, 2(3): 271
    Download Citation