• Photonic Sensors
  • Vol. 3, Issue 4, 355 (2013)
Hideaki MURAYAMA1、*, Daichi WADA1, and and Hirotaka IGAWA2
Author Affiliations
  • 1School of Engineering, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
  • 2Japan Aerospace Exploration Agency, 6-13-1 Ohsawa, Mitaka, Tokyo, 181-0015 Japan
  • show less
    DOI: 10.1007/s13320-013-0140-5 Cite this Article
    Hideaki MURAYAMA, Daichi WADA, and Hirotaka IGAWA. Structural Health Monitoring by Using Fiber-Optic Distributed Strain Sensors With High Spatial Resolution[J]. Photonic Sensors, 2013, 3(4): 355 Copy Citation Text show less
    References

    [1] D. Balageas, C. P. Fritzen, and A. Gümes, Structural health monitoring. London, UK: ISTE, 2006, pp. 15-18.

    [2] H. Murayama, G. Akiyama, H. Igawa, T. Nakamura, K. Kageyama, K. Uzawa, et al., “Application of inverse analysis of distributed load with strain sensors to wing structures,” in Proc. of the 7th International Workshop on Structural Health Monitoring, vol. 1, pp. 75-82, 2009.

    [3] C. R. Farrar and K. Worden, “An introduction to structural health monitoring,” Philosophical Transactions of The Royal Society A, vol. 365, no. 1851, pp. 303-315, 2007.

    [4] C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philosophical Transactions of The Royal Society A, vol. 359, no. 1778, pp. 131-149, 2001.

    [5] J. Dakin and B. Culshaw, Optical fiber sensors, London, U. K: Artech House, vol. 4, 1997, pp. 309-407.

    [6] B. Glisic and D. Inaudi, Fiber optic methods for structural health monitoring. West Sussex, U. K.: John Wiley & Sons, 2007, pp. 19-40.

    [7] T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain dependence of Brillouin frequency shift in silica optical fiber,” IEEE Photonics Technology Letters, vol. 1, no. 5, pp. 107-108, 1989.

    [8] M. LeBlanc, S. Huang, M. Ohn, and M. Measures, “Distributed strain measurement based on fiber Bragg grating and its reflection spectrum analysis,” Optics Letters, vol. 21, no. 17, pp. 1405-1407, 1996.

    [9] A. Nand, D. Kitcher, S. Wade, R. Jones, G. Baxter and S. Collins, “Localized measurements using an interrogation method to process intensity reflection spectra from chirped FBG,” in Proc. SPIE, vol. 6619, pp. 661911-1-661911-4, 2007.

    [10] S. Huang, M. Ohn, and M. Measures, “Phase-based Bragg intragrating distributed strain sensor,” Applied Optics, vol. 35, no. 7, pp. 1135-1142, 1996.

    [11] M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” Journal of Lightwave Technology, vol. 15, no. 11, pp. 2076-2082, 1997.

    [12] R. M. Measures, M. M. Ohn, and S. Y. Huang, J. Bigue, and N. Y. Fan, “Tunable laser demodulation of various fiber Bragg grating sensing modalities,” Smart Materials and Structures, vol. 7, no. 2, pp. 237-247, 1998.

    [13] H. Murayama, K. Kageyama, H. Naruse, A. Shimada, and K. Uzawa, “Application of fiber-optic distributed sensors to health monitoring for full-scale composite structures,” Journal of Intelligent Material Systems and Structures, vol. 14, no. 1, pp. 3-13, 2003.

    [14] H. Murayama, K. Kageyama, H. Naruse, and A. Shimada, “Distributed strain sensing from damaged composite materials based on shape variation of the Brillouin spectrum,” Journal of Intelligent Material Systems and Structures, vol. 15, no. 1, pp. 17-25, 2004.

    [15] H. Igawa, H. Murayama, T. Kasai, I. Yamaguchi, K Kageyama, and K. Ohta, “Measurements of strain distributions with a long gauge FBG sensors using optical frequency domain reflectometry,” in Proc. SPIE, vol. 5855, pp. 547-550, 2005.

    [16] H. Murayama, K. Kageyama, K. Uzawa, K. Ohara, and H. Igawa, “Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors,” Structural Health Monitoring, vol. 11, no. 3, pp. 322-341, 2012.

    [17] H. Murayama, K. Tachibana, Y. Hirano, H. Igawa, K. Kageyama, K. Uzawa, et al., “Distributed strain and load monitoring of 6 m composite wing structures by FBG arrays and long-length FBGs,” in Proc. SPIE, vol. 8421, pp. 84212D, 2012.

    [18] D. Wada, H. Murayama, and H. Igawa, “Lateral load measurements based a distributed sensing system of optical frequency domain reflectometry using long-length fiber Bragg gratings,” Journal of Lightwave Technology, vol. 30, no. 14, pp. 2337-2344, 2012.

    [19] H. Igawa, K. Ohta, T. Kasai, I. Yamaguchi, H. Murayama, and K. Kageyama, “Distributed measurements with a long gauge FBG sensors using optical frequency domain reflectometry (1st report, system investigation using optical simulation model),” Journal of Solid Mechanics and Materials Engineering, vol. 2, no. 9, pp. 1242-1252, 2008.

    [20] D. Wada, H. Murayama, H. Igawa, K. Kageyama, K. Uzawa, and K. Omichi, “Simultaneous distributed measurements of strain and temperature by polarization maintain fiber Bragg grating based on optical frequency domain reflectometry,” Smart Materials and Structures, vol. 20, no. 8, pp. 085028-850358, 2011.

    [21] H. Murayama, K. Kageyama, A. Shimada, and A. Nishiyama, “Improvement of spatial resolution for strain measurements by analyzing Brillouin gain spectrum,” in Proc. SPIE, vol. 5855, pp. 551-554, 2005.

    [22] Y. Sakairi, S. Matsuura, S. Adachi, and Y. Koyamada, “Prototype double-pulse BOTDR for measuring distributed strain with 20-cm spatial resolution,” in Proc. SICE Annual Conference, pp. 1106-1109, 2008.

    [23] Y. Mizuno, Z. He, and K. Hotate, “Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain analysis,” Optics Communications, vol. 283, no. 11, pp. 2526-2528, 2010.

    [24] S. Shen, Z. Wu, C. Yang, Y. Tang, G. Wu, and W. Hong, “A new optical fiber sensor with improved strain sensitivity based on distributed fiber sensing technique,” in Proc. SPIE, vol. 7293, pp. 729315, 2009.

    [25] Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improvement the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Applied Optics, vol. 48, no. 22, pp. 4297-4301, 2009.

    [26] L. Li, J. Yang, Z. Zhang, X. Chen, and M. Zhang, “Kilometers-range dark-pulse Brillouin optical time domain analyzer with centimeters spatial resolution,” in Proc. of 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, June 19-21, pp. 1-4, 2010.

    [27] K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Optics Letters, vol. 31, no. 17, pp. 2526-2528, 2010.

    [28] B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Sr. Moore, D. A. Hare, C. F. Batten, et al., “Use of 3000 Bragg grating strain sensors distributed on four eight-meter optical fibers during static load tests of a composite structure,” in Proc. SPIE, vol. 4332, pp. 133-142, 2001.

    [29] M. Goland and E. Reissner, “The stresses in cemented joints,” Journal of Applied Mechanics, vol. 11, no. 1, pp. A17-A27, 1944.

    [30] L. J. Hart-Smith, “Adhesive bonded single-lap joints - technical report,” NASA-CR-112236, 1973.

    [31] W. A. Bigwood and A. D. Crocombe, “Non-linear adhesive bonded joint design analyses,” International Journal of Adhesion and Adhesives, vol. 10, no. 1, pp. 31-41, 1990.

    [32] H. Murayama, K. Ohara, N. Kanata, K. Kageyama, and H. Igawa, “Strain monitoring and defect detection in welded joints by using fiber-optic distributed sensors with high spatial resolution,” E-Journal of Advanced Maintenance, vol. 2, no. 3, pp. 191-199, 2011.

    [33] A. Tessler and J. L. Spangler, “Inverse FEM for full-field reconstruction of elastic deformation in shear deformable plates and shells,” in Proc. of Second European Workshop on Structural Health Monitoring, Munich, Germany, July 7-9, pp. 83-90, 2004.

    [34] C. W. Coates and P. Thamburaj, “Inverse method using finite strain measurements to detection flight load distribution functions,” Journal of Aircraft, vol. 45, no. 2, pp. 366-370, 2008.

    [35] T. Nakamura and H. Igawa, “Inverse analysis of distributed load using strain data,” Journal of the Japan Society for Aeronautical and Space Sciences, vol. 56, no. 659, pp. 566-572, 2008 (in Japanese).

    [36] H. Igawa, H. Murayama, T. Nakamura, I. Yamaguchi, K. Kageyama, K. Uzawa, D. Wada, et al., “Measurement of distributed strain and load identification using 1500 mm gauge length FBG and optical frequency domain reflectometry,” in Proc. SPIE, vol. 7503, pp. 750351-1-750351-4, 2009.

    [37] H. Murayama, K. Kageyama, S. Kobayashi, G. Akiyama, K. Ohara, I. Ohsawa, et al., “Application of distributed sensing technique with FBG sensors to structural health monitoring,” in Proc. of the 6th International Workshop on Structural Health Monitoring, Stanford, USA, September 11-13, pp. 1020-1029, 2007.

    [38] R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electronics Letters, vol. 32, no. 13, pp. 1223-1224, 1996.

    [39] A. Zhang, B. Guan, X. Tao, and H. Tam, “Experimental and theoretical analysis of fiber Bragg gratings under lateral compression,” Optics Communications, vol. 206, no. 1-3, pp. 81-87, 2002.

    [40] R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Optical Fiber Technology, vol. 6, no. 3, pp. 299-323, 2000.

    [41] D. Wada and H. Murayama, “Analytical investigation of response of birefringent fiber Bragg grating sensors in distributed monitoring system based on optical frequency domain reflectometry,” Optics and Lasers in Engineering, in press, 2013.

    [42] M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Applied Optics, vol. 26, no. 16, pp. 3473-3478, 1987.

    [43] T. Erdogan, “Fiber grating spectra,” Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, 1997.

    [44] S. W. James, M. L. Dockney, and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors,” Electronics Letters, vol. 32, no. 12, pp. 1133-1134, 1996.

    [45] P. M. Cavaleiro, F. M. Araujo, L. A. Ferreira, J. L. Santos, and F. Farahi, “Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron- codoped germanosilicate fibers,” IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1636-1637, 1999.

    [46] M. Song, S. B. Lee, S. S. Choi, and B. Lee, “Simultaneous measurement of temperature and strain using two fiber Bragg gratings embedded in a glass tube,” Optical Fiber Technology, vol. 3, no. 2, pp. 194-196, 1997.

    [47] B. O. Guan, H. Y. Tam, L. W. Chan, C. L. Choy, and M. S. Demokan, “Discrimination between strain and temperature with a single fiber Bragg grating,” Microwave and Optical Technology Letters, vol. 33, no. 3, pp. 200-202, 2002.

    [48] G. Simpson, K. Kalli, K. Zhou, L. Zhang, and I. Bennion, “Blank beam fabrication of regenerated type IA gratings,” Measurement Science and Technology, vol. 15, no. 8, pp. 1665-1669, 2004.

    [49] S. O. Park, B. W. Jang, Y. G. Lee, C. G. Kim, and C. Y. Park, “Simultaneous measurement of strain and temperature using a reverse index fiber Bragg grating sensor,” Measurement Science and Technology, vol. 21, no. 3, pp. 035703, 2010.

    [50] J. Echevarria, A. Quintela, C. Jauregui, and J. M. Lopez-Higuera, “Uniform fiber Bragg grating first- and second-order diffraction wavelength experimental characterization for strain-temperature discrimination,” IEEE Photonics Technology Letters, vol. 13, no. 7, pp. 696-698, 2001.

    [51] E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Optics Communication, vol. 275, no. 2, pp. 344-347, 2007.

    [52] M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, and R. Yamauchi, “Simultaneous measurement of temperature and strain using PANDA fiber grating,” in Proc. of the 12th International Conference on Optical Fiber Sensors, OSA Technical Digest, Virginia, USA, October 28, vol. 16, pp. 170-173, 1997.

    CLP Journals

    [1] Chong He, Cheng Zhou, Qian Zhou, Shiyi Xie, Mengzhe Xiao, Jiajun Tian, Yong Yao. Simultaneous measurement of strain and temperature using Fabry–Pérot interferometry and antiresonant mechanism in a hollow-core fiber[J]. Chinese Optics Letters, 2021, 19(4): 041201

    Hideaki MURAYAMA, Daichi WADA, and Hirotaka IGAWA. Structural Health Monitoring by Using Fiber-Optic Distributed Strain Sensors With High Spatial Resolution[J]. Photonic Sensors, 2013, 3(4): 355
    Download Citation