• Advanced Photonics
  • Vol. 2, Issue 3, 036005 (2020)
Shan Jiang1、2、3, Meiling Guan1, Jiamin Wu4, Guocheng Fang5, Xinzhu Xu1, Dayong Jin2、5, Zhen Liu5, Kebin Shi6, Fan Bai7, Shu Wang8, and Peng Xi1、2、*
Author Affiliations
  • 1Peking University, College of Engineering, Department of Biomedical Engineering, Beijing, China
  • 2Southern University of Science and Technology China, Department of Biomedical Engineering, Shenzhen, Guangdong, China
  • 3Beijing Institute of Collaborative Innovation (BICI), Beijing, China
  • 4Tsinghua University, Department of Automation, Beijing, China
  • 5University of Technology Sydney, Faculty of Science, Institute for Biomedical Materials & Devices (IBMD), Ultimo, Australia
  • 6Peking University, School of Physics, Beijing, China
  • 7Peking University, School of Life Sciences, Biodynamic Optical Imaging Center (BIOPIC), Beijing, China
  • 8Peking University People’s Hospital Breast Center, Beijing, China
  • show less
    DOI: 10.1117/1.AP.2.3.036005 Cite this Article Set citation alerts
    Shan Jiang, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, Kebin Shi, Fan Bai, Shu Wang, Peng Xi. Frequency-domain diagonal extension imaging[J]. Advanced Photonics, 2020, 2(3): 036005 Copy Citation Text show less
    References

    [1] Y. Hiraoka, J. W. Sedat, D. A. Agard. The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science, 238, 36-41(1987).

    [2] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015).

    [3] X. Huang et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol., 36, 451-459(2018).

    [4] A. Lal et al. A frequency domain sim reconstruction algorithm using reduced number of images. IEEE Trans. Image Process., 27, 4555-4570(2018).

    [5] K. Zhanghao et al. Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat. Commun., 10, 4694(2019).

    [6] D. Dan et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep., 3, 1116(2013).

    [7] M. Müller et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 7, 10980(2016).

    [8] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron., 22, 50-63(2016).

    [9] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [10] L.-H. Yeh et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express, 23, 33214-33240(2015).

    [11] X. Cui et al. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. U.S.A., 105, 10670-10675(2008).

    [12] G. Stybayeva et al. Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal. Chem., 82, 3736-3744(2010).

    [13] Z. Zhang et al. Mask-modulated lensless imaging with multi-angle illuminations. APL Photonics, 3, 060803(2018).

    [14] Y. Wu, A. Ozcan. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods, 136, 4-16(2018).

    [15] M. Lee, O. Yaglidere, A. Ozcan. Field-portable reflection and transmission microscopy based on lensless holography. Biomed. Opt. Express, 2, 2721-2730(2011).

    [16] W. Bishara et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip, 11, 1276-1279(2011).

    [17] O. Mudanyali et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip, 10, 1417-1428(2010).

    [18] G. Biener et al. Combined reflection and transmission microscope for telemedicine applications in field settings. Lab Chip, 11, 2738-2743(2011).

    [19] Y.-C. Wu et al. Air quality monitoring using mobile microscopy and machine learning. Light Sci. Appl., 6, e17046(2017).

    [20] W. Bishara et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express, 18, 11181-11191(2010).

    [21] G. Zheng et al. The epetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. U.S.A., 108, 16889-16894(2011).

    [22] S. O. Isikman, W. Bishara, A. Ozcan. Lensfree on-chip tomographic microscopy employing multi-angle illumination and pixel super-resolution. J. Visualized Exp., e4161(2012).

    [23] A. Greenbaum, A. Ozcan. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Express, 20, 3129-3143(2012).

    [24] W. Luo et al. Pixel super-resolution using wavelength scanning. Light Sci. Appl., 5, e16060(2016).

    [25] A. F. Coskun et al. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst, 136, 3512-3518(2011).

    [26] W. Luo et al. Synthetic aperture-based on-chip microscopy. Light Sci. Appl., 4, e261(2015).

    [27] M. Rostykus, M. Rossi, C. Moser. Compact lensless subpixel resolution large field of view microscope. Opt. Lett., 43, 1654-1657(2018).

    [28] E. McLeod, A. Ozcan. Unconventional methods of imaging: computational microscopy and compact implementations. Rep. Prog. Phys., 79, 076001(2016).

    [29] J. Pawley. Handbook of Biological Confocal Microscopy(2010).

    [30] M. Guizar-Sicairos, S. T. Thurman, J. R. Fienup. Efficient subpixel image registration algorithms. Opt. Lett., 33, 156-158(2008).

    [31] T. Latychevskaia, H.-W. Fink. Practical algorithms for simulation and reconstruction of digital in-line holograms. Appl. Opt., 54, 2424-2434(2015).

    [32] T. Latychevskaia, H.-W. Fink. Solution to the twin image problem in holography. Phys. Rev. Lett., 98, 233901(2007).

    [33] W. Zhang et al. Twin-image-free holography: a compressive sensing approach. Phys. Rev. Lett., 121, 093902(2018).

    CLP Journals

    [1] Zhi-gao ZHU, Ya LIU, Jie YANG, Guo-qing HU. A Review of Single-Cavity Dual-Comb Laser and Its Application in Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3321

    Shan Jiang, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, Kebin Shi, Fan Bai, Shu Wang, Peng Xi. Frequency-domain diagonal extension imaging[J]. Advanced Photonics, 2020, 2(3): 036005
    Download Citation