• Laser & Optoelectronics Progress
  • Vol. 48, Issue 7, 71406 (2011)
Lu Yanhua*, Huang Yuanfang, Zhang Lei, Zhang Kai, Tang Chun, Wang Weimin, and Ma Yi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop48.071406 Cite this Article Set citation alerts
    Lu Yanhua, Huang Yuanfang, Zhang Lei, Zhang Kai, Tang Chun, Wang Weimin, Ma Yi. Research Progress of Sodium Guide Star Lasers[J]. Laser & Optoelectronics Progress, 2011, 48(7): 71406 Copy Citation Text show less
    References

    [1] Erez N. Ribak. Laser guide star projection for large telescopes[C]. SPIE, 2006, 6272: 62724E

    [2] Richard Joyce, Corinne Boyer, Larry Daggert et al.. The laser guide star facility for the thirty meter telescope[C]. SPIE, 2006, 6272: 62721H

    [3] P. D. Hillman, J. D. Drummord, C. A. Denman et al.. Simple model, including recoil, for the brightness of sodium star created from CW single frequency fasors and comparison to measurements[C]. SPIE, 2008, 7015: 701SOL

    [4] R. Holzlhner, S.M.Rochester, D.Bonaccini et al.. Optimization of cw sodium guide star efficiency[J]. Astronomy & Astrophysics, 2010, 510(A20):1~14

    [5] Byron M.Welsh, Chester S. Gardner. Effects of nonlinear resonant absorption on sodium laser guide star[C]. SPIE, 1989, 1114: 203~214

    [6] Peter W. Milonni, John M. Telle, Paul D. Hillman. Photon return from a mesospheric sodium guidestar versus excitation laser characteristics[C]. Couference on Lasers and Electro-Optics, 1998. 452

    [7] John M. Telle, Peter W. Milonni, Paul D. Hillman. Comparison of pump-laser characteristics for producing a mesospheric sodium guidestar for adaptive optical systems on large aperture telescopes[C]. SPIE, 1998, 3264: 37~42

    [8] Edward Kibblewhite. Calculation of returns from sodium beacons for different types of laser[C]. SPIE, 2008, 7015: 70150M

    [9] Herbert Friedman, Kenneth Avicola, Horst Bissinger et al.. Laser guide star measurements at Lawrence Livermore National Laboratory[C]. SPIE, 1993, 1920: 52~60

    [10] Herbert W. Friedman. Laser system design for the generation of a sodium-layer laser guide star[C]. SPIE, 1993, 1859: 251~262

    [11] Kenneth Avicola, James Brasc, James Morris et al.. Sodium laser guide star system at Lawrence Livermore National Laboratory: system description and experimental results[C]. SPIE, 1994, 2201: 326~341

    [12] C. E. Max, D. T. Gavel, S. S. Olivier et al.. Issues in the design and optimization of adaptive optics and guide stars for the Keck Telescopes[C]. SPIE, 1994, 2201: 189~200

    [13] Herbert Friedman, Gaylen Erbert, Thomas Kuklo et al.. Sodium beacon laser system for the lick observatory[C]. SPIE, 1995, 2534: 150~160

    [14] Andreas Quirrenbach, Wolfgang Hackenberg, Hans-Christoph Holstenberg et al.. The sodium laser guide star system of ALFA[C]. SPIE, 1997, 3126: 35~43

    [15] S. Rabien, R. Davies, W. Hackenberg et al.. Beam quality and polarization analysis of the ALFA-Laser at Calar Alto and influence on brightness and size of the laser guide star[C]. SPIE, 1999, 3782: 368~377

    [16] D. J. Butler, R. I. Davies, H. Fews et al.. Calar Alto ALFA and the sodium laser guide star in astronomy[C]. SPIE, 1999, 3762: 184~193

    [17] S. Rabien, R. I. Davies, T. Ott et al.. PARSEC, the laser for the VLT[C]. SPIE, 2002, 4494: 325~335

    [18] S. Rabien, R. I. Davies, T. Ott et al.. Design of PARSEC, the VLT laser[C]. SPIE, 2002, 4839: 393~401

    [19] Richard Davies, Thomas Ott, Jianlang Li et al.. Operational Issues for PARSEC, the VLT Laser[C]. SPIE, 2003, 4839: 402~411

    [20] D. Bonaccini, E. Allaert, C. Araujo et al.. The VLT laser guide star facility[C]. SPIE, 2003, 4839: 381~392

    [21] S. Rabien, R. I. Davies, T. Ott et al.. Test performance of the PARSEC laser system[C]. SPIE, 2004, 5490: 981~988

    [22] Thomas H.Jeys. Development of a mesospheric sodium laser beacon for atmospheric adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4(2): 133~150

    [23] Lü Yanfei, Tan Huiming, Qian Longsheng. Laser diode array pumped NdYAG dual wavelength laser with intracavity sum-frequency mixing at 589 nm[J]. Chinese J. Lasers, 2006, 33(4): 438~442

    [24] Geng Aicong, Bo Yong, Bi Yong et al.. A 3 W continuous-wave 589 nm yellow laser based on the intracavity sum frequency generation in a V-shaped cavity[J]. Acta Physica Sinica, 2006, 55(10): 5227~5230

    [25] Bo Yong, Geng Aicong, Lu Yuanfu et al.. A 4.8-W M2=4.6 continuous-wave intracavity sum-frequency diode-pumped solid-state yellow laser[J]. Chin. Phys. Lett., 2006, 23(6): 1494~1497

    [26] Liang Xingbo, Yuan Ligang, Jiang Dongsheng et al.. 10.5 W quasi continuous wave yellow laser at 589 nm[J]. Laser & Infrared, 2008, 38(9): 876~878

    [27] Liu Dong, Lu Yanhua, Ma Yi et al.. Diode pumped all-solid-state pulsed 589 nm laser[J]. High Power Laser and Particle Beams, 2008, 20(10): 1625~1628

    [28] Lu Yanhua, Liu Dong, Zhang Lei et al.. All-solid-state narrow linewidth sodium guidestar laser[J]. Chinese J. Lasers, 2009, 36(7): 1848~1851

    [29] Yuanfu Lu, Shiyong Xie, Yong Bo et al.. Generation of tunable and narrow linewidth continuous-wave yellow laser by sum-frequency mixing of diode-pumped solid-state NdYAG ring lasers[J]. Opt. Comm., 2009, 282(17): 3573~3576

    [30] Lu Yanhua, Zhang Lei, Ma Yi et al.. Sodium guidestar laser based on high-efficiency PPSLT quasi-phase-matched sum frequency generation[J]. Acta Optica Sinaca, 2010, 30(8): 2306~2310

    [31] Edward J. Kibblewhite, Fang Shi. Design and field tests of an 8 watt sum-frequency laser for adaptive optics[C]. SPIE, 1998, 3353: 300~309

    [32] Viswa Velur, Edward Kibblewhite, Richard Dekany et al.. Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed[C]. SPIE, 2004, 5490: 1033~1040

    [33] R. Dekany. Palomar Laser Guide Star Status[C]. UCLA Lake Arrowhead Conference, 2004. 3~11

    [34] Richard Dekany, Viswa Velur, Hal Petrie et al.. Laser guide star adaptive optics on the 5.1 meter telescope at Palomar observatory[J]. Amos Technical Conference Proceedings, 2005.

    [35] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26(4): 507~513

    [36] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. 50 W CW single frequency 589 nm FASOR[C]. OSA Trends in Optics and Photonics, Advanced Solid-State Photonics, 2005, 85: 698~702

    [37] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. Realization of a 50 watt facility-class sodium guidestar pump laser[C]. SPIE, 2005, 5707: 46~49

    [38] Craig A. Denman, Paul D. Hillman, Gerald T. Moore et al.. The starfire optical range sodium guidestar FASOR[C]. Proceedings of the twenty-first annual solid state and diode technology review, 2008. 784~827

    [39] R. W. P. Drever, J. L. Hall, F. V. Kowalski. Laser phaser and frequency stabilization using an optical resonator[J]. Appl. Phys. B, 1983, 31(2): 97~105

    [40] Allen J. Tracy, Allen K. Hankla, Camilo Lopez et al.. High-power solid-state sodium beacon laser guidestar for the Gemini North Observatory[C]. SPIE, 2004, 5490: 998~1009

    [41] Allen K. Hankla, Jarett Bartholomew, Ken Groff et al.. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South telescopes[C]. SPIE, 2006, 6272: 62721G

    [42] Ian Lee, Munib Jalali, Neil Vanasse et al.. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes[C]. SPIE, 2008, 7015: 70150N

    [43] Nicholas Sawruk, Ian Lee, Munib Jalali et al.. System overview of 30 W and 55 W sodium guide star laser systems[C]. SPIE, 2010, 7736: 77361Y

    [44] Wang Zhichao, Du Chenlin, Ruan Shuangchen. Research progress of all-solid-state yellow lasers[J]. Laser & Optoelectronics Progress, 2008, 45(1): 29~36

    [45] Liu Bo, Zhang Xingyu, Wang Qingpu et al.. Diode-pumped intracavity frequency-doubled NdYVO4 self-Raman yellow laser[J]. Acta Photonica Sinica, 2007, 36(10): 1777~1779

    [46] Wang Zhengping, Hu Dawei, Zhang Huaijin et al.. External resonator BaWO4 crystal Raman laser[J]. Infrared and Laser Engineering, 2009, 38(4): 683~686

    [47] Hu Dawei, Wang Zhengping, Zhang Huaijin et al.. External resonator YVO4 crystal Raman laser[J]. Optics and Precision Engineering, 2009, 17(5): 975~979

    [48] Du Chenlin, Wang Zhichao, Ruan Shuangchen. LD-pumped NdYVO4 self Raman laser at 1176 nm[J]. J. Shenzhen University Science and Engineering, 2008, 25(4): 418~421

    [49] Malte Duering, Vesselin Kolev, B. L. Davies. Generation of tuneable 589 nm radiation as a Na guide star source using an optical parametric amplifier[J]. Opt. Express, 2009, 17(2): 437~446

    [50] D. M. Pennington, R. Beach, J. Dawson et al.. Compact fiber laser approach to generating 589 nm laser guide stars[C]. Conference on Lasers and Eletro-Optics, 2003. 730

    [51] D. M. Pennington, J. W. Dawson, A. Drobshoff et al.. Compact fiber laser for 589 nm laser guide stars generation[C]. Conference on Lasers and Eletro-Optics, 2005

    [52] Jay W. Davson, Alex D. Drobshoff, Raymond J. Beach et al.. Multi-watt 589 nm fiber laser source[C]. SPIE, 2006, 6102: 61021F

    [53] D. M. Pennington, J. W. Dawson, R. J. Beach et al.. Compact fiber laser for 589 nm laser guide star generation[C]. Conference on Lasers and Eletro-Optics, 2005, 532

    [54] Sharma.1.52 W frequency-doubled fiber based continuous wave orange laser radiation at 590 nm[J]. Rev. Laser Eng., 2005, 33(2): 130~131

    [55] Georgiev, V. P. Gapontser, A. G. Dronv et al.. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Opt. Express, 2005, 13(18): 6772~6776

    [56] Luke R. Taylor, Yan Feng, D. B. Calia et al.. Multi-watt 589 nm Na D2-line generation via frequency doubling of a Raman fibre amplifier: a source for LGS-assisted AO[J]. SPIE, 2006, 6272: 627249

    [57] Luke Taylor, Yan Feng, D. B. Calia. High power narrowband 589 nm frequency doubled fibre laser source[J]. Opt. Express, 2009, 17(17): 14687~14693

    [58] Yan Feng, Luke R. Taylor, D.B.Calia. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Opt. Express, 2009, 17(21): 19021~19026

    [59] Y. Feng, L. R. Taylor, D. B. Calia et al.. 39 W narrow linewidth Raman fiber amplifier with frequency doubling to 26.5 W at 589 nm[R]. Presented at Frontiers in Optics, San Diego, 2009, PDPA4

    [60] D. B. Calia, Yan Feng, W. Hackenberg et al.. Laser development for sodium laser guide stars at ESO[J]. Telescopes and Instrumentation, 2010, 139: 12~19

    [61] Yan Feng, Luke R. Taylor, D. B. Calia. 150 W highly-efficient Raman fiber laser[J]. Opt. Express, 2009, 17(26): 23678~23683

    [62] Luke R. Taylor, Yan Feng, D. B. Calia. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Opt. Express, 2010, 18(8): 8540~8555

    [63] Wallance R.Clements, Wilhelm Kaenders. High-power guidestar lasers are ready for next-generaion AO astronomy[J]. Laser Focus World. 2010, 46(6): 27~33

    [64] T. Justin Bronder, Harold Miller, Jonathan Stohs et al.. AFRL advanced electric lasers branch: construction and upgrade of a 50-watt facility-class sodium guidestar pump laser[C]. Proceedings of the advanced Maui Optical and Space Surveillance Technologies Conference, 2009: E59

    CLP Journals

    [1] Liu Xiangyuan, Qian Xianmei, Cui Chaolong, Rao Ruizhong. Numerical Simulation of Return Photons Number of Sodium Laser Beacon in the Atmospheric Turbulence[J]. Acta Optica Sinica, 2013, 33(2): 201001

    Lu Yanhua, Huang Yuanfang, Zhang Lei, Zhang Kai, Tang Chun, Wang Weimin, Ma Yi. Research Progress of Sodium Guide Star Lasers[J]. Laser & Optoelectronics Progress, 2011, 48(7): 71406
    Download Citation