• Chinese Optics Letters
  • Vol. 18, Issue 3, 033301 (2020)
Cheng Gao1、2, Zhifeng Wang2, Yang Xu2, Manuel Melgosa3, Kaida Xiao4, Michael H. Brill5, and Changjun Li2、*
Author Affiliations
  • 1School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China
  • 2School of Computer and Software Engineering, University of Science and Technology Liaoning, Anshan 114051, China
  • 3Department of Optics, Faculty of Sciences, University of Granada, Granada 18071, Spain
  • 4School of Design, University of Leeds, Leeds LS2 9JT, UK
  • 5Datacolor, Lawrenceville, NJ 08648, USA
  • show less
    DOI: 10.3788/COL202018.033301 Cite this Article Set citation alerts
    Cheng Gao, Zhifeng Wang, Yang Xu, Manuel Melgosa, Kaida Xiao, Michael H. Brill, Changjun Li. The von Kries chromatic adaptation transform and its generalization[J]. Chinese Optics Letters, 2020, 18(3): 033301 Copy Citation Text show less

    Abstract

    Most viable modern chromatic adaptation transforms (CATs), such as CAT16 and CAT02, can trace their roots both conceptually and mathematically to a simple model formulated from the hypotheses of Johannes von Kries in 1902, known as the von Kries transform/model. However, while the von Kries transform satisfies the properties of symmetry and transitivity, most modern CATs do not satisfy these two important properties. In this Letter, we propose a generalized von Kries transform, which satisfies the symmetry and transitivity properties in addition to improving the fit to most available experimental visual datasets on corresponding colors.
    (RβGβBβ)=M(XβYβZβ),(1)

    View in Article

    (Ra,βGa,βBa,β)=(kR,βRβkG,βGβkB,βBβ),(2)

    View in Article

    kR,β=1Rw,β,kG,β=1Gw,β,kB,β=1Bw,β,(3)

    View in Article

    (Rw,βGw,βBw,β)=M(Xw,βYw,βZw,β),(4)

    View in Article

    (Ra,βGa,βBa,β)=(Ra,δGa,δBa,δ)or(kR,βRβkG,βGβkB,βBβ)=(kR,δRδkG,δGδkB,δBδ).(5)

    View in Article

    Γδ,β=diag(kR,βkR,δkG,βkG,δkB,βkB,δ),(6)

    View in Article

    sRGB,δ=Γδ,βsRGB,βorsXYZ,δ=M1Γδ,βMsXYZ,β.(7)

    View in Article

    Γδ,βΓβ,δ=I3,(8)

    View in Article

    Γγ,δΓδ,β=Γγ,β.(9)

    View in Article

    kR,β=kR,βqR,β,kG,β=kG,βqG,β,kB,β=kB,βqB,β.(10)

    View in Article

    Γδ,β=diag(kR,βkR,δkG,βkG,δkB,βkB,δ).(11)

    View in Article

    qR,β=pR,β,(12)

    View in Article

    pR,β=1+(Lβ)1/3+rE,β1+(Lβ)1/3+1/rE,β,(13)

    View in Article

    rE,β=3Rw,β/RERw,β/RE+Gw,β/GE+Bw,β/BE;(14)

    View in Article

    qR,β=qG,β=qB,β=Yw,β;(15)

    View in Article

    qR,β=RE,qG,β=GE,qB,β=BE.(16)

    View in Article

    qR,βqR,δ=qG,βqG,δ=qB,βqB,δ=c;(17)

    View in Article

    Γδ,β=c·diag(Rw,δRw,βGw,δGw,βBw,δBw,β)=cΓδ,β.(18)

    View in Article

    sXYZ,δ=M1Γδ,βMsXYZW,β=csXYZW,δ.(19)

    View in Article

    qR,βqR,δ=qG,βqG,δ=qB,βqB,δ=c=1.(20)

    View in Article

    Γδ,β,CATxx=DxxΓδ,β+(1Dxx)I3,(21)

    View in Article

    Πδ,β,2Step=(ΓE,δ,CATxx)1ΓE,β,CATxx. (22)

    View in Article

    kR,β=DβkR,β+(1Dβ),kG,β=DβkG,β+(1Dβ),kB,β=DβkB,β+(1Dβ).(23)

    View in Article

    Γδ,β=diag(kR,βkR,δkG,βkG,δkB,βkB,δ).(24)

    View in Article

    qR,β=qG,β=qB,β=c2.(25)

    View in Article

    Rw,E=Gw,E=Bw,E=Xw,E=Yw,E=Zw,E=100.(26)

    View in Article

    kR,E=kG,E=kB,E=kR,E=kG,E=kB,E=1.(27)

    View in Article

    ΓE,β=ΓE,β,CATxx.(28)

    View in Article

    Γδ,E=(ΓE,δ,CATxx)1.(29)

    View in Article

    Cheng Gao, Zhifeng Wang, Yang Xu, Manuel Melgosa, Kaida Xiao, Michael H. Brill, Changjun Li. The von Kries chromatic adaptation transform and its generalization[J]. Chinese Optics Letters, 2020, 18(3): 033301
    Download Citation