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Most viable modern chromatic adaptation transforms (CATs), such as CAT16 and CAT02, can trace their roots
both conceptually and mathematically to a simple model formulated from the hypotheses of Johannes von Kries
in 1902, known as the von Kries transform/model. However, while the von Kries transform satisfies the proper-
ties of symmetry and transitivity, most modern CATs do not satisfy these two important properties. In this
Letter, we propose a generalized von Kries transform, which satisfies the symmetry and transitivity properties
in addition to improving the fit to most available experimental visual datasets on corresponding colors.
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Our visual system attracts many researchers including
medical, vision, optical, psychological, and color scientists.
For clinical applications[1,2], medical, vision, and optical
scientists investigated image formation by our eyes to cor-
rect dysfunctions such as astigmatism, presbyopia, and
myopia. On a functional level, vision and color scientists
try to understand how we generate color sensations from
received images and try to model phenomena such as color
difference[3], chromatic adaptation[4–6], and color appear-
ance[7–9]. In this Letter, we model chromatic adaptation
in order to predict corresponding colors when the predomi-
nant viewing environment is changed.
A chromatic adaptation transform (CAT) is capable of

predicting corresponding colors. A pair of corresponding
colors consists of a color observed under one illuminant
(say, D65) and another color that has the same appear-
ance when observed under a different illuminant (say, A).
CATs are part of color appearance models (CAMs)[7–9],
which are important for many industrial applications.
These transforms have been extensively studied over sev-
eral decades ever since Johannes von Kries[10] in 1902 laid
down the foundation for modeling chromatic adaptation.
Rather than giving a specific set of equations for the mod-
eling, he instead simply outlined his hypothesis in words
and described the potential impact of his ideas. Based on
his hypothesis, chromatic adaptation in the visual system
is considered the independent change in responsivity of the
three types of cone photoreceptors. To present the von
Kries hypothesis in terms of a chromatic adaptation
model, we need a 3 by 3 matrix M , which transforms
the tristimulus values (TSVs) Xβ;Y β;Zβ under an

illuminant called β into the cone-like or sharper sensor
spaces (R;G;B or L;M ; S spaces). Here, we will use the
R;G;B notation. Thus, we have

0
B@
Rβ

Gβ

Bβ

1
CA ¼ M

0
B@
Xβ

Y β

Zβ

1
CA; (1)

where the matrix M can be the well-known HPE matrix[7],
the CAT02 matrix[8], or the CAT16 matrix[9]. The entire
chromatic adaptation is completed in the R;G;B space.
The signals Rβ;Gβ;Bβ are considered to be the initial cone
responses. According to the von Kries proportionality law,
the von Kries post-adaptation signals Ra;β;Ga;β;Ba;β are
given by
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1
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1
CA; ð2Þ

where the subscript a signifies adaptation, β represents the
illuminant, and R;G;B indicate different channels. The
von Kries adaptation factors or coefficients kR;β; kG;β; kB;β
are independent of each other and are given by

kR;β ¼
1

Rw;β
; kG;β ¼

1
Gw;β

; kB;β ¼
1

Bw;β
; (3)

where the subscript w signifies the sensor space signals
transformed from the TSV of the illuminant β white point,
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andXw;β;Yw;β;Zw;β are the TSVs of the illuminant β white
point. Thus, if two stimuli sβ and sδ are viewed under illu-
minants β and δ, respectively, and they are perceived with
the same appearance, then we must have
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1
CA ¼
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0
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1
CA:

ð5Þ

When Eq. (5) holds, the two stimuli are called corre-
sponding colors.
Note that when we say stimulus sβ in the TSV space, we

mean that sβ is a column vector formed by TSVs
Xβ;Y β;Zβ. In this case, sβ can be written as sXYZ ;β. When
we say stimulus sβ in the cone-like space, we mean that sβ
is a column vector formed by cone sponse signals
Rβ;Gβ;Bβ obtained using Eq. (1). Similarly, in this case,
sβ can be written as sRGB;β. If we let diag ða; b; cÞ be a 3 by
3 diagonal matrix, the von Kries transform in the cone-like
space, denoted by Γδ;β, can be simply defined by

Γδ;β ¼ diag
�
kR;β
kR;δ

kG;β

kG;δ

kB;β
kB;δ

�
; (6)

and the real von Kries transformation from stimulus sβ to
stimulus sδ is a simple matrix and vector multiplication:

sRGB;δ ¼ Γδ;βsRGB;β or sXYZ ;δ ¼ M−1Γδ;βMsXYZ ;β: (7)

Note that the order of the symbols δ; β in the subscript
of the von Kries transform Γδ;β is important. Here, δ; β
mean that the von Kries transformmaps stimulus sβ under
illuminant β to stimulus sδ under illuminant δ. Similarly,
transform Γβ;δ maps stimulus sδ under illuminant δ to
stimulus sβ under illuminant β. Note also that, if two
stimuli sβ and sδ are corresponding colors, then sδ and
sβ are also corresponding colors, with this property being
called symmetry. Thus, we expect the von Kries transform
to satisfy this property. In fact, it can be verified that

Γδ;βΓβ;δ ¼ I 3; (8)

where I 3 is the 3 × 3 identity matrix. Equation (8) shows
that the von Kries transform has the property of sym-
metry, as desired. Also, if sβ and sδ are corresponding
colors, and sγ and sδ are corresponding colors too, then
sγ and sβ must be corresponding colors, and this property
is known as transitivity. Similarly, we also expect the
von Kries transform to have transitivity. Fortunately, it
is indeed the case, since

Γγ;δΓδ;β ¼ Γγ;β: (9)

The von Kries transform can be further modified by
introducing the modified von Kries adaptation factors:

k0R;β ¼ kR;βqR;β; k0G;β ¼ kG;βqG;β; k0B;β ¼ kB;βqB;β: (10)

Based on the above new von Kries adaptation factors,
we can have the modified von Kries transform, Γ0

δ;β, which
is defined by

Γ0
δ;β ¼ diag

� k0R;β
k0R;δ

k0G;β

k0G;δ

k0B;β
k0B;δ

�
: (11)

It can be shown that the modified von Kries transform
also satisfies the symmetry and transitivity.

Note that if the scaling factors qR;β, qG;β, qB;β in Eq. (10)
are all equal to one, the modified von Kries transform be-
comes the classical von Kries transform, i.e., Γ0

δ;β ¼ Γδ;β.
In fact, by different choices of the scaling factors qR;β,
qG;β, qB;β, the modified von Kries adaptation factors be-
come some available adaptation factors in the literatures,
such as the Fairchild factors (see page 177 in Ref. [11])
with

qR;β ¼ pR;β; (12)

pR;β ¼
1þ ðLβÞ1∕3 þ rE;β

1þ ðLβÞ1∕3 þ 1∕rE;β
; (13)

rE;β ¼
3Rw;β∕RE

Rw;β∕RE þGw;β∕GE þ Bw;β∕BE
; (14)

CMCCAT2000[12], CAT02[13], and CAT16[4,9] factors with

qR;β ¼ qG;β ¼ qB;β ¼ Yw;β; (15)

or Smet et al.[5,6] factors with

qR;β ¼ RE ; qG;β ¼ GE ; qB;β ¼ BE : (16)

Here, RE , GE , BE are obtained using Eq. (1) with the
TSVs of the equal energy illuminant white point. Lβ is
the luminance of the adapting field and is about 20% of
the absolute luminance of the illuminant β. Thus, it can be
seen the modified von Kries adaptation factors [Eq. (10)]
are more general. We will discuss next how to choose the
factors qR;β, qG;β, qB;β. Firstly, they should satisfy

qR;β
qR;δ

¼ qG;β

qG;δ
¼ qB;β

qB;δ
¼ c; (17)

in this case, it can be shown from Eq. (11) that

Γ0
δ;β ¼ c·diag

�
Rw;δ

Rw;β

Gw;δ

Gw;β

Bw;δ

Bw;β

�
¼ c Γδ;β: (18)
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Hence,

sXYZ ;δ ¼ M−1Γ0
δ;βMsXYZW ;β ¼ csXYZW ;δ: (19)

Thus, if the CAT maps the TSVs of Xw;β;Yw;β;Zw;β, the
output is cXw;δ; cYw;δ; cZw;δ, which is correct as expected.
The CAT shouldmake the chromaticity correct as discussed
in the Letter[14] by Hunt et al. However, one may think it is
better if the CAT can make the luminance correct as well.
It is clear the constant c must be one under this condition,
which one may want if the input is Xw;β;Yw;β;Zw;β

and then the output is Xw;δ;Yw;δ;Zw;δ. So, the next condi-
tion for factors qR;β, qG;β, qB;β is

qR;β
qR;δ

¼ qG;β

qG;δ
¼ qB;β

qB;δ
¼ c ¼ 1: (20)

The condition of Eq. (20) means factors qR;β, qG;β, qB;β
are independent of illuminant. From Eqs. (12)–(14), the
Fairchild factors are illuminant dependent, and they
may not satisfy conditions of Eqs. (17) and (20). Factors
qR;β, qG;β, qB;β defined by Eq. (15) are illuminant depen-
dent, but they satisfy condition Eq. (17). They also satisfy
condition Eq. (20) if Yw;β ¼ Yw;δ. Factors qR;β, qG;β, qB;β
defined by Eq. (16) use a fixed illuminant; hence, then
they will satisfy both conditions of Eqs. (17) and (20).
Up to now, it seems that if the factors qR;β, qG;β, qB;β

satisfy the condition of Eq. (20), the modified von Kries
transform is in fact the classical von Kries transform.
Yes, it is the case. However, one will see the reason for
introducing the modified von Kries transform.
However, neither the (classical) von Kries [see Eq. (6)]

nor the modified von Kries transform [see Eq. 11)] with
factors qR;β, qG;β, qB;β given by any set of Eqs. (12)–(16)
shows a tight fit with the experimental visual data sets on
corresponding colors (see test results below). To solve this
problem, researchers have proposed various linear and
nonlinear extensions, as detailed by Fairchild[11]. The lin-
ear extensions related to the International Commission on
Illumination (CIE) CAMs[8,9], such as CAT02[13] and
CAT16[9], with factors qR;β, qG;β, qB;β defined by Eq. (15),
can be expressed as

Γδ;β;CATxx ¼ DxxΓ0
δ;β þ

�
1−Dxx

�
I 3; (21)

where xx in the subscript can be 02 for CAT02[13] and 16
for CAT16[9]; although, in fact, D02 and D16 are the same.
The incomplete adaptation factor Dxx is between 0 and 1.
When Dxx is one, Γδ;β;CATxx becomes Γ0

δ;β in such a way
that CAT02 and CAT16 can be considered as extensions
to the modified von Kries transform. However, whenDxx is
different from 1 or 0, they no longer satisfy the symmetry
and transitivity properties. That is, in general, Γδ;β;CATxx

does not satisfy Eqs. (8) and (9). Hence, an inverse CAT
is needed for Γδ;β;CATxx, which is simple for linear CATs
and is given by ðΓδ;β;CATxxÞ−1 mapping stimulus sδ to

stimulus sβ. The CAT Γδ;β;CATxx is normally called a one-
step CAT, which directly maps stimulus sβ to stimulus sδ.

Recently, Smet et al.[5,6] [using factors qR;β, qG;β, qB;β de-
fined by Eq. (16)] and Li et al.[4] [using factors qR;β, qG;β,
qB;β defined by Eq. (15)] proposed two-step CATs via the
intermediate CIE illuminant E, which is defined by the
equi-energy spectrum (see Fig. 1 in Ref. [5]). Firstly, a
one-step CAT such as ΓE;β;CATxx is applied to map stimu-
lus sβ to stimulus sE . In this stage, the adaptation to the
illuminant β for our visual system is referred to as illumi-
nant E. Similarly, for the adaptation to the illuminant δ in
the second stage, the illuminant E is also used, and a one-
step CAT ðΓE;δ;CATxxÞ−1 is applied to map stimulus sE to
stimulus sδ. The end result is the two-step CAT, denoted
by Πδ;β;2Step, defined by

Πδ;β;2Step ¼
�
ΓE;δ;CATxx

�
−1
ΓE;β;CATxx: (22)

Note that the incomplete adaptation factor Dxx in
each of the one-step CATs in Eq. (22) may be different.
Fortunately, the two-step CAT satisfies the symmetry
and transitivity properties[4]. Furthermore, the two-step
CAT performs equally well or better than the one-step
CAT in predicting the visual datasets on corresponding
colors[4]. However, the derivation of the two-step CAT
is debatable. Why does the adaptation for our visual
system always refer to an illuminant (illuminant E) that
does not exist in the real world? We should recall that the
derivations of the von Kries and modified von Kries trans-
forms do not need an intermediate illuminant.

Can we have a CAT that satisfies symmetry and tran-
sitivity without referring to an intermediate illuminant
and fits the visual datasets as good as or better than
the one-step CAT? The answer is yes. To this end, we have
introduced the incomplete adaptation factor D into the
modified von Kries adaptation factors rather than into
the modified von Kries transform Γ0

δ;β [see Eq. (21)].
Thus, the new incomplete adaptation factors under illumi-
nant β are

k00R;β ¼ Dβk0R;β þ ð1− DβÞ;
k00G;β ¼ Dβk0G;β þ ð1−DβÞ;
k00B;β ¼ Dβk0B;β þ ð1−DβÞ:

(23)

The new incomplete adaptation factors under illumi-
nant δ can be similarly defined. As with the derivation
of the von Kries or the modified von Kries transform, we
have a new CAT, called the generalized von Kries (GvK)
transform, which is denoted as Γ00

δ;β and uses the new
incomplete adaptation factors defined in Eq. (23). Thus,
the GvK transform Γ00

δ;β is given by

Γ00
δ;β ¼ diag

� k00R;β
k00R;δ

k00G;β

k00G;δ

k00B;β
k00B;δ

�
: (24)
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It can be shown that Γ00
δ;β satisfies Eqs. (8) and (9). Thus,

the GvK transform indeed satisfies the properties of
symmetry and transitivity.
Note that the GvK transform has two adaptation fac-

tors, Dβ and Dδ. The Dβ factor in CAT02 and CAT16 de-
pends only on the luminance level of illuminant β, and
hence, Dβ and Dδ are the same if the luminance levels
of the two illuminants are the same. Recently, several
papers[5,6,15] have reported that the D factor affects the per-
formance of CATs and have guessed that theD factor may
also depend on correlated color temperature (CCT).
Note also that when we consider the von Kries, modified

von Kries, and GvK transforms in TSV space, an associ-
ated matrix M mapping the stimulus in TSV to the cone-
like space [see Eq. (1)] is necessary. For example, as noted
before, the von Kries transform in TSV space is simply
given by ðM−1Γδ;βMÞ, where the matrix M can be the
CAT02, CAT16, or HPE matrices.
Before we test the performance of the GvK transform,

we need also to specify the factors qR;β, qG;β, qB;β in
Eq. (10). According to the discussion above, it is better that
they are independent of illuminant. A simple choice is

qR;β ¼ qG;β ¼ qB;β ¼ c2: (25)

Here, c2 is a constant again. According to Eqs. (23)
and (24), performance of the GvK transform is also depen-
dent on c2. For the testing below, c2 is set to be 100. The
reason for it is explained below.
Performance of the proposed von Kries transform

Γ00
δ;β with the CAT02, CAT16, and HPE matrices has

been tested using the available corresponding color
datasets[16–22], which were used for developing CAT02 and
CAT16. The formula employed for the D factor was the
one used for CAT02 and CAT16. Comparisons with the
von Kries transform Γδ;β, (one-step) CAT02, and CAT16
were also made. The results found are summarized in
Table 1, in terms of mean, weighted mean, minimum
(Min), and maximum (Max) CIELAB color differences be-
tween the predicted and experimental TSVs for each pair
of corresponding colors in datasets. There are 21 datasets,
and each dataset has a different number of pairs of corre-
sponding colors. The values in the row of Table 1 labeled
with Mean are the average of the mean color differences

for the different datasets, while the values in the row la-
beled with Weighted Mean are the weighted mean color
difference; the weight for each dataset is the ratio of
the number of pairs in this dataset and the number of pairs
in all the datasets. The values in the second to last row are
the Max of Max color differences for the different datasets.
The values in the last row are the Min of Min color
differences for the different datasets. The lower the values
in Table 1, the better the performance of the correspond-
ing model.

First, Table 1 indicates that when using any of the three
matrices, the proposed GvK transform (see results under
columns Γ00

δ;β) is better than the von Kries transform (see
results under columns Γδ;β). Note the von Kries and modi-
fied von Kries transforms are the same since factors qR;β,
qG;β, qB;β satisfy Eq. (25). Second, the proposed GvK
transform is equally well as or better than the (one-step)
CAT02 with one exception being under Min measure with
negligible 0.1 color difference unit (see results under col-
umn CAT02) and (one-step) CAT16 (see results under
column CAT16). Third, both the von Kries and the pro-
posed GvK transforms perform best using the CAT02
matrix, second best using the CAT16 matrix, and worst
using the HPE matrix. However, we should note that the
CAT02 matrix has the “yellow–blue” and “purple” prob-
lems[23–25]. The CAT16 matrix[9,26] was derived for the aim
of fitting visual datasets and overcoming the “yellow–
blue” and “purple” problems. Therefore, we recommend
that the CAT16 matrix should be used for the von Kries,
modified von Kries, and proposed GvK transforms.

Note that if the D factors Dβ and Dδ are set to one, any
c2 value does not affect the performance of the GvK trans-
form. In fact, in this case, it is simply the von Kries trans-
form, i.e., Γ00

δ;β ¼ Γ0
δ;β ¼ Γδ;β. However, when we use the D

factor to be the D factor of CAT02 (CAT16), the c2 value
indeed affects the performance of the GvK transform. It
was found that when c2 ¼ 100, the GvK transform per-
forms the best; when c2 deviates from 100, the GvK trans-
form performs worse. This may come from three facts.
First, all visual datasets tested here, Yw ¼ 100. Second,
the Yw factor was introduced into the CAT02, CAT16,
and CMCCAT2000 for being consistent with the nonlin-
ear CMCCAT97[27], which was built in CIECAM97s[7]. As
discussed above, theYw factor is just related to the scaling

Table 1. Performance of von Kries (Γδ;β) and Generalized von Kries Transforms (Γ00
δ;β) Together with the (One-Step)

CAT02 and the (One-Step) CAT16, in Terms of Mean, Weighted Mean, Maximum (Max), and Minimum (Min)
CIELAB Color Differences from Visual Datasets on Corresponding Colors[16–22]

CAT02 Matrix CAT16 Matrix HPE Matrix

Γδ;β CAT02 Γ00
δ;β Γδ;β CAT16 Γ00

δ;β Γδ;β Γ00
δ;β

Mean 7.6 6.3 6.2 8.1 6.3 6.2 9.4 7.4

Weighted Mean 6.4 5.5 5.5 6.9 5.6 5.6 8.1 6.7

Max 34.2 26.7 24.4 39.9 27.0 25.5 50.0 35.5

Min 0.5 0.3 0.4 0.3 0.3 0.3 0.4 0.3
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factors qR;β, qG;β, qB;β [see Eqs. (10), (15)]. Finally, the
matrix and D factor of CAT02/CAT16 were derived
based on fitting all the visual datasets[16–22] as best as pos-
sible. Hence, it is recommended to use the c2 ¼ 100
together with the D factor of the CAT02/CAT16 for
the GvK transform before a better D factor is developed.
When one of the two illuminants is illuminant E, the

GvK transform Γ00
δ;β becomes a one-step CAT [see Eq. (21)]

with c2 ¼ Yw ¼ 100. In fact, since the CAT02, CAT16,
and HPE matrices are normalized according to the
illuminant E, we have

Rw;E ¼ Gw;E ¼ Bw;E ¼ Xw;E ¼ Yw;E ¼ Zw;E ¼ 100:

(26)

Thus, from Eqs. (3), (10), and (14), we have

k0R;E ¼ k0G;E ¼ k0B;E ¼ k00R;E ¼ k00G;E ¼ k00B;E ¼ 1: (27)

Therefore, from Eq. (15), considering also Eqs. (11),
(14), and (17),

Γ00
E;β ¼ diag

� k00R;β
k00R;E

k00G;β

k00G;E

k00B;β
k00B;E

�

¼ diag
�
k00R;β k00G;β k00B;β

�
¼ Dβdiag

�
k0R;β k0G;β k0B;β

�þ ð1− DβÞI 3
¼ DβΓ0

E;β þ ð1−DβÞI 3:

Hence, if we let Dβ ¼ Dxx in Eq. (12), we have

Γ00
E;β ¼ ΓE;β;CATxx: (28)

Equation (28) means that the proposed GvK transform
mapping stimulus under illuminant β to stimulus under
illuminant E is just the normal one-step CAT from stimu-
lus under illuminant β to stimulus under illuminant E.
Remember that the one-step CAT ΓE;β;CATxx is used in
the forward mode in CIECAM02/CAM16. Similarly, it
can be proved that

Γ00
δ;E ¼

�
ΓE;δ;CATxx

�
−1
: (29)

Equation (29) means that the GvK transform mapping
stimulus under illuminant E to stimulus under illuminant
δ is just the inverse of the normal one-step CAT from the
stimulus under illuminant δ to the stimulus under illumi-
nant E. We should bear in mind that the inverse of
one-step CAT ΓE;δ;CATxx is used in the inverse mode in
CIECAM02/CAM16. Therefore, we conclude that the
proposed GvK transform can be used in the current CIE-
CAM02/CAM16.
In conclusion, the von Kries transform was reviewed,

and then the modified von Kries transform was derived
based on the modified von Kries adaptation coefficients
[see Eq. (10)]. The factors qR;β, qG;β, qB;β in Eq. (10) were
shown to be better if they satisfy condition Eq. (20),

resulting in it being better if the Yw factor in CAT02,
CAT16, and CMCCAT2000 is a constant of 100. The Yw

factor was introduced into CMCCAT2000 first, later into
CAT02 and CAT16 to be consistent with CIECAM97s
and CMCCAT97, and further justification was discussed
in the Letter given by Hunt et al.[14]. Since 2000, there was
a debate about theYw factor. There is nothing wrong with
a CAT including the Yw factor like CMCCAT2000 and
CAT02, since the main purpose of a CAT should make
the chromaticity correct. However, when the Yw factor
is fixed to a constant like 100, the CAT can make both
chromaticity and luminance correct.

It was found that the current linear CAT02 and CAT16
can be considered to be the extension of the modified von
Kries transform. However, while the von Kries and modi-
fied von Kries transforms satisfy symmetry and transitiv-
ity, CAT02 and CAT16 do not satisfy these two properties
in general. Finally, a GvK transform has been proposed.
The proposed GvK transform, similar to the von Kries
and modified von Kries transforms, satisfies the symmetry
and transitivity of the properties. Performance evaluation
using the available visual datasets[16–22] showed that the
proposed GvK transform performs better than the von
Kries and modified von Kries transforms and performs
equally well as or better than the (one-step) CAT02
and CAT16. Furthermore, the proposed GvK transform
does not need an inverse transform and can be used in
CIECAM02/CAM16.

Finally, we note that recently Kerouh et al.[28] used a
CAT to convert the (input) image of a scene captured
under one illuminant to the (output) image of the same
scene captured under another illuminant. Their results
have shown that the CAT affects image content such
as edges, texture, and homogeneous area differently.
Image-content-based CATs were developed. Comparison
results based on multispectral images have shown that the
image-content-based CATs perform better than other
CATs including the von Kries and Bradford transforms.
Our proposed GvK model is evaluated here using the
visual corresponding color datasets and may be further
evaluated in the future using image data.
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