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Most viable modern chromatic adaptation transforms (CATs), such as CAT16 and CAT02, can trace their roots
both conceptually and mathematically to a simple model formulated from the hypotheses of Johannes von Kries
in 1902, known as the von Kries transform/model. However, while the von Kries transform satisfies the proper-
ties of symmetry and transitivity, most modern CATs do not satisfy these two important properties. In this
Letter, we propose a generalized von Kries transform, which satisfies the symmetry and transitivity properties
in addition to improving the fit to most available experimental visual datasets on corresponding colors.
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Our visual system attracts many researchers including
medical, vision, optical, psychological, and color scientists.
For clinical applications®?, medical, vision, and optical
scientists investigated image formation by our eyes to cor-
rect dysfunctions such as astigmatism, presbyopia, and
myopia. On a functional level, vision and color scientists
try to understand how we generate color sensations from
received images and try to model phenomena such as color
differencel?, chromatic adaptation®?, and color appear-
anceY. In this Letter, we model chromatic adaptation
in order to predict corresponding colors when the predomi-
nant viewing environment is changed.

A chromatic adaptation transform (CAT) is capable of
predicting corresponding colors. A pair of corresponding
colors consists of a color observed under one illuminant
(say, D65) and another color that has the same appear-
ance when observed under a different illuminant (say, A).
CATs are part of color appearance models (CAMs)Z2,
which are important for many industrial applications.
These transforms have been extensively studied over sev-
eral decades ever since Johannes von Kries™ in 1902 laid
down the foundation for modeling chromatic adaptation.
Rather than giving a specific set of equations for the mod-
eling, he instead simply outlined his hypothesis in words
and described the potential impact of his ideas. Based on
his hypothesis, chromatic adaptation in the visual system
is considered the independent change in responsivity of the
three types of cone photoreceptors. To present the von
Kries hypothesis in terms of a chromatic adaptation
model, we need a 3 by 3 matrix M, which transforms
the tristimulus values (TSVs) Xj, Y4, Z; under an
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illuminant called f into the cone-like or sharper sensor
spaces (R, G, B or L, M, S spaces). Here, we will use the
R, G, B notation. Thus, we have

Ry X
Gy | =ml v, |, (1)
By Zp

where the matrix M can be the well-known HPE matrix,
the CAT02 matrix, or the CAT16 matrix?. The entire
chromatic adaptation is completed in the R, G, B space.
The signals Ry, G, By are considered to be the initial cone
responses. According to the von Kries proportionality law,
the von Kries post-adaptation signals R, s, G, 4, B,y are
given by

Rop kp sy
Ga,ﬂ - kG.ﬂ Gﬂ 9 (2)
By kg By

where the subscript a signifies adaptation, f represents the
illuminant, and R, G, B indicate different channels. The
von Kries adaptation factors or coefficients kg 4, k¢ 4, kp 4
are independent of each other and are given by

1 1 1

kG,/} = Tﬂ’ kB,/} = Tﬂa (3)

kpp = ——
Rp R /}7

w!

where the subscript w signifies the sensor space signals
transformed from the TSV of the illuminant § white point,
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Ry p Xoyp
Gup | =M| Yy |, (4)
By g Zwp

and X, 3, Y, 3, Z,, 5 are the TSVs of the illuminant g white
point. Thus, if two stimuli s; and s5 are viewed under illu-
minants f and §, respectively, and they are perceived with
the same appearance, then we must have

Ra.ﬁ Ra,ﬁ kR,/;’ Rﬂ kR,ﬁRﬁ
Gu,ﬁ = Ga.ﬁ or kG,ﬁ G/j = kG.ﬁ G5
By Bys kppBps kpsBs

(5)

When Eq. (5) holds, the two stimuli are called corre-
sponding colors.

Note that when we say stimulus s; in the TSV space, we
mean that sz is a column vector formed by TSVs
Xp, Yy, Zp. In this case, sz can be written as sxy; 5. When
we say stimulus sz in the cone-like space, we mean that s,
is a column vector formed by cone sponse signals
Ry, Gy, By obtained using Eq. (1). Similarly, in this case,
sp can be written as spqp 4. If we let diag (a, b, ¢) be a 3 by
3 diagonal matrix, the von Kries transform in the cone-like
space, denoted by I'; 4, can be simply defined by

. kR.ﬂ kG,ﬂ kB.ﬂ
FS,/} - dlag( kRy& kG}é kBﬁ )7 (6)

and the real von Kries transformation from stimulus s4 to
stimulus ss is a simple matrix and vector multiplication:

spaps = VspSpapp O Syyzs = M 'TssMsyyz 4. (7)

Note that the order of the symbols 8, f in the subscript
of the von Kries transform I’y is important. Here, 8,
mean that the von Kries transform maps stimulus sz under
illuminant g to stimulus ss under illuminant §. Similarly,
transform I'y s maps stimulus s; under illuminant 6 to
stimulus sz under illuminant f. Note also that, if two
stimuli s; and ss are corresponding colors, then s; and
sp are also corresponding colors, with this property being
called symmetry. Thus, we expect the von Kries transform
to satisfy this property. In fact, it can be verified that

s p5lp5 = I3, (8)

where I3 is the 3 x 3 identity matrix. Equation (8) shows
that the von Kries transform has the property of sym-
metry, as desired. Also, if s; and s; are corresponding
colors, and s, and ss are corresponding colors too, then
s, and sz must be corresponding colors, and this property
is known as transitivity. Similarly, we also expect the
von Kries transform to have transitivity. Fortunately, it
is indeed the case, since

Ly slsp =Tpe 9)

The von Kries transform can be further modified by
introducing the modified von Kries adaptation factors:

Kpp=krparp kop=kcpdcp Kpp=kppapp. (10)

Based on the above new von Kries adaptation factors,
we can have the modified von Kries transform, Ffw, which
is defined by

/

. (Krp Fop Kp
T5p = dlag( &b L /—ﬂ) (11)
rs Fas Fpgs

It can be shown that the modified von Kries transform
also satisfies the symmetry and transitivity.

Note that if the scaling factors qg 4, ¢4, 455 in Eq. (10)
are all equal to one, the modified von Kries transform be-
comes the classical von Kries transform, i.e., Fiw =54
In fact, by different choices of the scaling factors qpg,
qGp> 4Bp, the modified von Kries adaptation factors be-
come some available adaptation factors in the literatures,
such as the Fairchild factors (see page 177 in Ref. [11])
with

drp = PRp> (12>

1 + (Lﬁ)l/g + TE,ﬂ
1 + (Lﬁ)l/g + 1/TE,/37

Prp =

3R, 5/ Rg
Tpg = ' ;
b Ry,p/Rg+ Gup/Gp+ Bug/Bg

(14)

CMCCAT2000%, CAT02%, and CAT16%Y factors with

drp = dcp = 4Bp = Yw,/x; (15)

or Smet et al.29 factors with
qrp = Bp,qcp = Gg, qpp = Bg. (16)

Here, Rp, Gy, By are obtained using Eq. (1) with the
TSVs of the equal energy illuminant white point. Ly is
the luminance of the adapting field and is about 20% of
the absolute luminance of the illuminant . Thus, it can be
seen the modified von Kries adaptation factors [Eq. (10)]
are more general. We will discuss next how to choose the
factors qrg, qap, qpp- Firstly, they should satisfy

drp _9Gp _ IBp _ e (17)
drs 4Gs 4Bs

in this case, it can be shown from Eq. (11) that

r,=c diag(R"“"S Cus B”"s) =cT (18)
op Rw,ﬁ Gw,ﬂ Bw,ﬂ o
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Hence,

SXvzs = Mﬁlris,/;MSXYZW,/J‘ = CSxyzw .5 (19)

Thus, if the CAT maps the TSVs of X, 3, Y, 3, Z, 4, the
output is ¢X, 5, ¢Y 5 ¢Z, 5 which is correct as expected.
The CAT should make the chromaticity correct as discussed
in the Letter'™ by Hunt et al. However, one may think it is
better if the CAT can make the luminance correct as well.
It is clear the constant ¢ must be one under this condition,
which one may want if the input is X, 4, Vi3, Zyp
and then the output is X, 5, Y, 5, Z,, 5. So, the next condi-
tion for factors qr s, qap, IBp is

drp _dcp _ IBp _ c=1. (20)
qdrs 4Gs 94Bs

The condition of Eq. (20) means factors qp 4, ¢a s, q5p
are independent of illuminant. From Egs. (12)—(14), the
Fairchild factors are illuminant dependent, and they
may not satisfy conditions of Egs. (17) and (20). Factors
qrps 4cp, qpp defined by Eq. (15) are illuminant depen-
dent, but they satisfy condition Eq. (17). They also satisty
condition Eq. (20) if V5 = Y, 5. Factors qps, 44, app
defined by Eq. (16) use a fixed illuminant; hence, then
they will satisfy both conditions of Egs. (17) and (20).

Up to now, it seems that if the factors qrg, gy, app
satisfy the condition of Eq. (20), the modified von Kries
transform is in fact the classical von Kries transform.
Yes, it is the case. However, one will see the reason for
introducing the modified von Kries transform.

However, neither the (classical) von Kries [see Eq. (6)]
nor the modified von Kries transform [see Eq. 11)] with
factors qp s, q¢p, qpp given by any set of Eqgs. (12)-(16)
shows a tight fit with the experimental visual data sets on
corresponding colors (see test results below). To solve this
problem, researchers have proposed various linear and
nonlinear extensions, as detailed by FairchildY. The lin-
ear extensions related to the International Commission on
Humination (CIE) CAMsE?) such as CAT02Y and
CAT16Y, with factors qrs, ¢cp, qpp defined by Eq. (15),
can be expressed as

Fé,ﬁ,CATxx - Dxxrgﬁﬂ + (1 - Dxx) 133 (21)

where xx in the subscript can be 02 for CAT02% and 16
for CAT16Y; although, in fact, Dy, and D;4 are the same.
The incomplete adaptation factor D, is between 0 and 1.
When Dy, is one, s cate becomes I 4 in such a way
that CAT02 and CAT16 can be considered as extensions
to the modified von Kries transform. However, when D, is
different from 1 or 0, they no longer satisfy the symmetry
and transitivity properties. That is, in general, I's 5 cary
does not satisfy Egs. (8) and (9). Hence, an inverse CAT
is needed for I's s caT«, Which is simple for linear CATs

and is given by (Fg_ﬁ_CATXX)’l mapping stimulus s; to

stimulus sg. The CAT T’ 3 caTy is normally called a one-
step CAT, which directly maps stimulus s; to stimulus s;.

Recently, Smet et al.29 [using factors qr 4, q¢.4, qpp de-
fined by Eq. (16)] and Li et al [using factors qrs, ¢,
qpp defined by Eq. (15)] proposed two-step CATs via the
intermediate CIE illuminant F, which is defined by the
equi-energy spectrum (see Fig. 1 in Ref. [5]). Firstly, a
one-step CAT such as I'g g caorx is applied to map stimu-
lus s5 to stimulus sg. In this stage, the adaptation to the
illuminant g for our visual system is referred to as illumi-
nant E. Similarly, for the adaptation to the illuminant § in
the second stage, the illuminant F is also used, and a one-
step CAT (g s0aty) ' is applied to map stimulus sz to
stimulus sz. The end result is the two-step CAT, denoted
by Il g 2step, defined by

—1
s g oStep = (rE‘ﬁ,CATxx> I'rpoatsx: (22)

Note that the incomplete adaptation factor D, in
each of the one-step CATs in Eq. (22) may be different.
Fortunately, the two-step CAT satisfies the symmetry
and transitivity properties?. Furthermore, the two-step
CAT performs equally well or better than the one-step
CAT in predicting the visual datasets on corresponding
colors?. However, the derivation of the two-step CAT
is debatable. Why does the adaptation for our visual
system always refer to an illuminant (illuminant E) that
does not exist in the real world? We should recall that the
derivations of the von Kries and modified von Kries trans-
forms do not need an intermediate illuminant.

Can we have a CAT that satisfies symmetry and tran-
sitivity without referring to an intermediate illuminant
and fits the visual datasets as good as or better than
the one-step CAT? The answer is yes. To this end, we have
introduced the incomplete adaptation factor D into the
modified von Kries adaptation factors rather than into
the modified von Kries transform I, [see Eq. (21)].
Thus, the new incomplete adaptation factors under illumi-
nant f are

Kpp = Dgki s + (1= Dp),
Kep = Dk + (1= Dp), (23)
kg5 = Dpkp s+ (1 — Dp).

The new incomplete adaptation factors under illumi-
nant 6 can be similarly defined. As with the derivation
of the von Kries or the modified von Kries transform, we
have a new CAT, called the generalized von Kries (GvK)
transform, which is denoted as I'j ; and uses the new
incomplete adaptation factors defined in Eq. (23). Thus,
the GvK transform I'j ; is given by

k// k// k//
I :diag( RpZGh - ZBp ) (24)
oF k/ziz,(s kﬁG,& %,5
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It can be shown that I'] ; satisfies Eqs. (8) and (9). Thus,
the GvK transform indeed satisfies the properties of
symmetry and transitivity.

Note that the GvK transform has two adaptation fac-
tors, Dy and Ds. The Dy factor in CAT02 and CAT16 de-
pends only on the luminance level of illuminant £, and
hence, Dy and D; are the same if the luminance levels
of the two illuminants are the same. Recently, several
papers28 have reported that the D factor affects the per-
formance of CATs and have guessed that the D factor may
also depend on correlated color temperature (CCT).

Note also that when we consider the von Kries, modified
von Kries, and GvK transforms in TSV space, an associ-
ated matrix M mapping the stimulus in TSV to the cone-
like space [see Eq. (1)] is necessary. For example, as noted
before, the von Kries transform in TSV space is simply
given by (M'Ts;M), where the matrix M can be the
CATO02, CAT16, or HPE matrices.

Before we test the performance of the GvK transform,
we need also to specify the factors qrg, qcp, qpp in
Eq. (10). According to the discussion above, it is better that
they are independent of illuminant. A simple choice is

drp = dcp = 4Bp = Co- (25)

Here, ¢, is a constant again. According to Eqs. (23)
and (24), performance of the GvK transform is also depen-
dent on ¢y. For the testing below, ¢, is set to be 100. The
reason for it is explained below.

Performance of the proposed von Kries transform
I, with the CAT02, CAT16, and HPE matrices has
been tested using the available corresponding color
datasets’>2 which were used for developing CAT02 and
CAT16. The formula employed for the D factor was the
one used for CAT02 and CAT16. Comparisons with the
von Kries transform I 4, (one-step) CATO02, and CAT16
were also made. The results found are summarized in
Table 1, in terms of mean, weighted mean, minimum
(Min), and maximum (Max) CIELAB color differences be-
tween the predicted and experimental TSVs for each pair
of corresponding colors in datasets. There are 21 datasets,
and each dataset has a different number of pairs of corre-
sponding colors. The values in the row of Table 1 labeled
with Mean are the average of the mean color differences

for the different datasets, while the values in the row la-
beled with Weighted Mean are the weighted mean color
difference; the weight for each dataset is the ratio of
the number of pairs in this dataset and the number of pairs
in all the datasets. The values in the second to last row are
the Max of Max color differences for the different datasets.
The values in the last row are the Min of Min color
differences for the different datasets. The lower the values
in Table 1, the better the performance of the correspond-
ing model.

First, Table 1 indicates that when using any of the three
matrices, the proposed GvK transform (see results under
columns I'j ;) is better than the von Kries transform (see
results under columns I's 43). Note the von Kries and modi-
fied von Kries transforms are the same since factors gp g,
qcp, 4pp satisfy Eq. (25). Second, the proposed GvK
transform is equally well as or better than the (one-step)
CATO02 with one exception being under Min measure with
negligible 0.1 color difference unit (see results under col-
umn CATO02) and (one-step) CAT16 (see results under
column CAT16). Third, both the von Kries and the pro-
posed GvK transforms perform best using the CAT02
matrix, second best using the CAT16 matrix, and worst
using the HPE matrix. However, we should note that the
CATO02 matrix has the “yellow-blue” and “purple” prob-
lemsZ 2, The CAT16 matrix®? was derived for the aim
of fitting visual datasets and overcoming the “yellow—
blue” and “purple” problems. Therefore, we recommend
that the CAT16 matrix should be used for the von Kries,
modified von Kries, and proposed GvK transforms.

Note that if the D factors Dy and Dj are set to one, any
¢y value does not affect the performance of the GvK trans-
form. In fact, in this case, it is simply the von Kries trans-
form, i.e., Fgﬁ = Fgﬁﬂ = I'; 5. However, when we use the D
factor to be the D factor of CAT02 (CAT16), the ¢, value
indeed affects the performance of the GvK transform. It
was found that when ¢y = 100, the GvK transform per-
forms the best; when ¢, deviates from 100, the GvK trans-
form performs worse. This may come from three facts.
First, all visual datasets tested here, Y ,, = 100. Second,
the Y, factor was introduced into the CAT02, CAT16,
and CMCCAT2000 for being consistent with the nonlin-
ear CMCCAT97%), which was built in CIECAM97s7. As
discussed above, the Y, factor is just related to the scaling

Table 1. Performance of von Kries (I's 5) and Generalized von Kries Transforms (I'j ;) Together with the (One-Step)
CATO02 and the (One-Step) CAT16, in Terms of Mean, Weighted Mean, Maximum (Max), and Minimum (Min)
CIELAB Color Differences from Visual Datasets on Corresponding Colors®2

CATO02 Matrix CAT16 Matrix HPE Matrix
Lsp CATO02 Fg,/} Lsp CAT16 Fg,ﬂ s p Fg,/}
Mean 7.6 6.3 6.2 8.1 6.3 6.2 94 7.4
Weighted Mean 6.4 5.5 5.5 6.9 5.6 5.6 8.1 6.7
Max 34.2 26.7 24.4 39.9 27.0 25.5 50.0 35.5
Min 0.5 0.3 0.4 0.3 0.3 0.3 04 0.3
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factors qrs, qep app [see Egs. (10), (15)]. Finally, the
matrix and D factor of CAT02/CATI16 were derived
based on fitting all the visual datasets’S2 as best as pos-
sible. Hence, it is recommended to use the ¢, =100
together with the D factor of the CAT02/CAT16 for
the GvK transform before a better D factor is developed.

When one of the two illuminants is illuminant F, the
GvK transform I'; ; becomes a one-step CAT [see Eq. (21)]
with ¢ = Y, = 100. In fact, since the CAT02, CAT16,
and HPE matrices are normalized according to the
illuminant E, we have

Rw,E = Gw‘E = Bw,E = Xw,E = Yw,E = Zw,E = 100.
(26)

Thus, from Egs. (3), (10), and (14), we have
klR,E - k/G,E - kj}?,E - k/é,E = klé’VE = kl}l},E =1 (27)

Therefore, from Eq. (15), considering also Egs. (11),
(14), and (17),

Ip= diag( Z{B o Ko Koy )
R,

= diag( k’}tﬁ k’é_ﬂ k’é,ﬂ)

= Dydiag(kry Koy Kpg)+(1— Dyl

= Dﬂlﬂhﬁ + (1 — Dp)I;.

7 /1
kG,E kB,E

Hence, if we let Dy = Dy, in Eq. (12), we have
I s =Tpp oAt (28)

Equation (28) means that the proposed GvK transform
mapping stimulus under illuminant § to stimulus under
illuminant F'is just the normal one-step CAT from stimu-
lus under illuminant g to stimulus under illuminant FE.
Remember that the one-step CAT I'gjcare is used in
the forward mode in CIECAMO02/CAM16. Similarly, it
can be proved that

—1
IS p= (FE,a,CATxx> ~ (29)

Equation (29) means that the GvK transform mapping
stimulus under illuminant E to stimulus under illuminant
§ is just the inverse of the normal one-step CAT from the
stimulus under illuminant § to the stimulus under illumi-
nant E. We should bear in mind that the inverse of
one-step CAT I'pscare 18 used in the inverse mode in
CIECAMO02/CAM16. Therefore, we conclude that the
proposed GvK transform can be used in the current CIE-
CAMO02/CAM16.

In conclusion, the von Kries transform was reviewed,
and then the modified von Kries transform was derived
based on the modified von Kries adaptation coefficients
[see Eq. (10)]. The factors qpz, q¢p, 454 in Eq. (10) were
shown to be better if they satisfy condition Eq. (20),

resulting in it being better if the Y, factor in CATO02,
CAT16, and CMCCAT2000 is a constant of 100. The Y,
factor was introduced into CMCCAT2000 first, later into
CATO02 and CAT16 to be consistent with CIECAM97s
and CMCCAT97, and further justification was discussed
in the Letter given by Hunt et al.Y. Since 2000, there was
a debate about the Y, factor. There is nothing wrong with
a CAT including the Y, factor like CMCCAT2000 and
CATO02, since the main purpose of a CAT should make
the chromaticity correct. However, when the Y, factor
is fixed to a constant like 100, the CAT can make both
chromaticity and luminance correct.

It was found that the current linear CAT02 and CAT16
can be considered to be the extension of the modified von
Kries transform. However, while the von Kries and modi-
fied von Kries transforms satisfy symmetry and transitiv-
ity, CAT02 and CAT16 do not satisfy these two properties
in general. Finally, a GvK transform has been proposed.
The proposed GvK transform, similar to the von Kries
and modified von Kries transforms, satisfies the symmetry
and transitivity of the properties. Performance evaluation
using the available visual datasets’S2? showed that the
proposed GvK transform performs better than the von
Kries and modified von Kries transforms and performs
equally well as or better than the (one-step) CAT02
and CAT16. Furthermore, the proposed GvK transform
does not need an inverse transform and can be used in
CIECAMO02/CAMIG6.

Finally, we note that recently Kerouh et al.Z¥ used a
CAT to convert the (input) image of a scene captured
under one illuminant to the (output) image of the same
scene captured under another illuminant. Their results
have shown that the CAT affects image content such
as edges, texture, and homogeneous area differently.
Image-content-based CATs were developed. Comparison
results based on multispectral images have shown that the
image-content-based CATs perform better than other
CATs including the von Kries and Bradford transforms.
Our proposed GvK model is evaluated here using the
visual corresponding color datasets and may be further
evaluated in the future using image data.
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the Natural Science Foundation of Liaoning Province
(No. 2019-ZD-0267), and the Ministry of Economy and

Competitiveness of the government of Spain
(No. FIS2016-80983-P).
References
1. Y. Li, W. Huang, H. Feng, and J. Chen, Chin. Opt. Lett. 16, 113302
(2018).

2. Y. Bian, Y. Liu, and L. Jiang, Chin. Opt. Lett. 16, 093301 (2018).

3. Z. Wang and H. Xu, Chin. Opt. Lett. 12, 023301 (2014).

4. C. Li, Y. Xu, Z. Wang, M. R. Luo, G Cui, M. Melgosa, M. H. Brill,
and M. Pointer, Color Res. Appl. 43, 633 (2018).

5. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, Opt. Express
25, 7732 (2017).

033301-5



COL 18(3), 033301(2020)

CHINESE OPTICS LETTERS

March 2020

10.

11.

12.

13.

14.

15.
16.

. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, Opt. Express
25, 8350 (2017).

. M. R. Luo and R. W. G. Hunt, Color Res. Appl. 23, 138 (1998).

. CIE. Publ. 159:2004, “A colour appearance model for colour manage-
ment systems: CIECAMO02,” Technical Report.

. C.Li, Z. Li, Z. Wang, Y. Xu, M. R. Luo, G. Cui, M. Melgosa, M. H.

Brill, and M. Pointer, Color Res. Appl. 42, 703 (2017).

J. von Kries, Festschrift der Albrecht-Ludwig-Universitat, D. L.

MacAdam, transl. “Chromatic adaptation,” in Sources of Color

Science (MIT Press, 1970).

M. D. Fairchild, Color Appearance Models, 2nd ed. (Wiley, 2005).

C. Li, M. R. Luo, B. Rigg, and R. W. G. Hunt, Color Res. Appl. 27,

49 (2002).

M. R. Luo and C. Li, in Colorimetry: Understanding the CIE System,

J. Schanda, ed. (Wiley, 2007), Chap. 11.

R. W. G. Hunt, C. Li, and M. R. Luo, Color Res. Appl. 30, 69 (2005).

Q. Zhai and M. R. Luo, Opt. Express 26, 7724 (2018).

K. M. Lam, “Metamerism and colour constancy,” Ph.D. thesis

(University of Bradford, UK, 1985).

17

18

19.
20.

21.
22.

23.
24.

25.
26.

27.
28.

033301-6

. L. Mori, H. Sobagaki, H. Komatsubara, and K. Ikeda, in Proceedings
of the CIE 22nd Session (1991), p. 55.

. W. G. Kuo, M. R. Luo, and H. E. Bez, Color Res. Appl. 20, 313

(1995).

H. Helson, D. B. Judd, and M. H. Warren, Illum. Eng. 47, 221 (1952).

M. R. Luo, A. A. Clarke, P. A. Rhodes, A. Schappo, S. A. R.

Scrivener, and C. J. Tait, Color Res. Appl. 16, 166 (1991).

E. J. Breneman, J. Opt. Soc. Am. A 4, 1115 (1987).

K. M. Braun and M. D. Fairchild, in Proceedings of the 4th Color

Imaging Conference (1996), p. 214.

M. H. Brill, Color Res. Appl. 31, 142 (2006).

S. Siisstrunk and M. H. Brill, in Late-Breaking-News Paper at

Fourteenth Color Imaging Conference (2006).

M. H. Brill and S. Siisstrunk, Color Res. Appl. 33, 424 (2008).

J. Jiang, Z. Wang, M. R. Luo, M. Melgosa, M. H. Brill, and C. Li,

Color Res. Appl. 40, 491 (2015).

M. R. Luo and R. W. G. Hunt, Color Res. Appl. 23, 154 (1998).

F. Kerouh, D. Ziou, and K. N. Lahmar, Pattern Anal. Appl. 21, 1109

(2018).



