[1] M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A Moorman, D. W. Simonetti, S. Craig, D. R. Marshak, “Multilineage potential of adult human mesenchy-mal stem cells," Science 284, 143–147 (1999).
[2] A. I. Caplan, “Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics," Tissue Eng. 11, 1198–1211 (2005).
[3] A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine." J. Cell. Physiol. 213, 341–347 (2007).
[4] R. K. Chailakhyan, K. S. Lalykina, “Spontaneous and induced differentiation of osseous tissue in a population of fibroblast-like cells obtained from long-term monolayer cultures of bone marrow and spleen," Doklady Akademii nauk SSSR 187, 473–479 (1969) (in Russian).
[5] A. J. Friedenstein, R. K. Chailakhyan, K. S. Laly-kina, “The development of fibroblasts colonies in monolyer cultures of guines pig bone marrow and spleen cells," Cell Tissue Kin. 3, 393–403 (1970).
[6] J. J. Lataillade, C. Doucet, E. Bey, H. Carsin, C. Huet, I. Clairand, J. F. Bottollier-Depois, A. Chapel, I. Ernou, M. Gourven, L. Boutin, A. Hayden, C. Carcamo, E. Buglova, M. Joussemet, T. de Revel, P. Gourmelon, “New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy," Regen. Med. 2, 785–794 (2007).
[7] M. Zhu, Z. Zhou, Y. Chen, R. Schreiber, J. T. Ransom, J. K. Fraser, M. H. Hedrick, K. Pinkernell, H.-C. Kuo, “Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention," Ann. Plast. Surg. 64, 222–228 (2010).
[8] K. Yoshimura, H. Suga, H. Eto, “Adipose-derived stem/ progenitor cells: Roles in adipose tissue remodeling and potential use for soft tissue augmentation," Regen. Med. 4, 265–273 (2009).
[9] S. L. Chen, W. W. Fang, F. Ye, Y. H. Liu, J. Qian, S. J. Shan, J. J. Zhang, R. Z. Chunhua, L. M. Liao, S. Lin, J. P. Sun, “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction," Am. J. Cardiol. 94, 92–95 (2004).
[10] G. V. Silva, S. Litovsky, J. A. R. Assad, A. L. S. Sousa, B. J. Martin, D. Vela, S. C. Coulter, J. Lin, J. Ober, W. K. Vaughn, R. V. C. Branco, E. M. Oliveira, R. He, Y.-J. Geng, J. T. Willerson, E. C. Perin, “Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model," Circulation 111, 150–156 (2005).
[11] N. Petite, V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, G. Guillemin, “Tissue -engineered bone regener-ation," Nat. Biotechnol. 18, 959–963 (2000).
[12] R. K. Gupta, A. K. Das, A. Chullikana, A. S. Majundar, “Mesenchymal stem cells for cartilage repair in osteoarthritis," Stem Cell Res. Ther. 3, 25–34 (2012).
[13] T. Cui, R. Terlecki, A. Atala, “Tissue engineering in urethral reconstruction," Arch. Esp Urol. 67, 29–34 (2014).
[14] A. Gonfiotti, M. O. Jaus, D. Barale, S. Baiguera, C. Comin, F. Lavorini, G. Fontana, O. Sibila, G. Rombolà, P. Jungebluth, P. Macchiarini, “5-year Follow-up of the first tissue engineered airway transplantation," Lancet 383, 238–244 (2014).
[15] M. E. Scarritt, N. C. Pashos, B. A. Bunnell, “A Review of Cellularization Strategies for Tissue Engineering of Whole Organs," Front. Bioeng. Biotechnol. 3, 43 (2015).
[16] A. J. Friedenstein, R. K. Chailakhyan, Yu. V. Gerasimov, “Bone marrow osteogenig stem cells: In vitro cultivation and transplantation in diffusion chambers," Cell Tissue Kin. 20, 263–272 (1987).
[17] R. K. Chailakhyan, Yu. V. Gerasimov, M. R. Chailakhyan, A. A. Galoyan, “Proline-rich hypo-thalamic polypeptide has opposite effects on the proliferation of human mormal bone marrow stro-mal cells and human giant-cell tumour stromal cell," Neurochem. Res. 35, 934–939 (2010).
[18] R. K. Chailakhyan, Yu. V. Gerasimov, A. I. Kur-alesova, N. V. Latsinik, E. N. Genkina, M. R. Chafflakhian, “Proliferative and Differetiation Po-tential of Individual Clones Derived from Bone Marrow Stromal Precursor Cells," Izvestiya Acade-mii Nauk. 6, 682–692 (2001), (in Russian).
[19] D. Rubio, J. Garsia-Castro, M. C. Martin, R. de la Fuente, J. C. Cigudosa, A. C. Lloyd, A. Bernard, “Spontaneous human adult stem cell trans-formation," Cancer Res. 65, 3035–3039 (2005).
[20] X. Liang, Y. H. So, J. Cui, K. Ma, X. Xu, Y. Zhao, L. Cai, W. Li, “The low-dose ionizing radiation sti-mulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells," J. Rad. Res. 52, 380–386 (2011).
[21] H. Tuby, L. Maltz, U. Oron, “Low-level laser irra-diation (LLLI) promotes proliferation of mesenchy-mal and cardiac stem cells in culture," Lasers Surg. Med. 39, 373–378 (2007).
[22] J. F. Hou, H. Zhang, X. Yuan, J. Li, Y. J. Wei, S. S. Hu, “In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differ-entiation," Lasers Surg. Med. 40, 726–733 (2008).
[23] F. D. P. Eduardo, D. F. Bueno, P. M. de Freitas, M. M. Marques, M. R. Passos-Bueno, C. D. P. Eduardo, M. Zatz, “Stem cell proliferation under low intensity laser irradiation: A preliminary study," Lasers Surg. Med. 40, 433–438 (2008).
[24] Y. K. Luu, E. Capilla, C. J. Rosen, V. Gilsanz, J. E. Pessin, S. Judex, C. T. Rubin, “Mechanical Stimu-lation of Mesenchymal Stem Cell Proliferation and Differentiation Promotes Osteogenesis While Pre-venting Dietary-Induced Obesity," J. Bone Miner. Res. 24, 50–61 (2009).
[25] Z. Tong, R. L. Duncan, X. Jia, “Modulating the behaviors of mesenchymal stem cells via the com-bination of high-frequency vibratory stimulations and fibrous scaffolds," Tissue Eng. A 19, 1862–1878 (2013).
[26] S. Noriega, T. Mamedov, J. A. Turner, A. Sub-ramanian, “Intermittent applications of continuous ultrasound on the viability, proliferation, morphol-ogy, and matrix production of chondrocytes in 3D matrices," Tissue Eng. 13, 611–618 (2007).
[27] O. V. Betskii, N. N. Lebedeva, Low-intensity milli-meter waves in biology and medicine, Bioelec-tromagnetic Medicine, P. J. Rosch, M. S. Markov, Eds., pp. 741–759, Marcel Dekker, New York (2004).
[28] R. K. Chailakhyan, Yu. V. Gerasimov, A. P. Svir-idov, A. V. Kondyrin, A. H. Tambiev V. N. Bagratashvili, “Effect of IR laser radiation on the multipotent mesechymal stromal stem cells of rat marrow in vivo," Russ. Immunol. 3, 318–322 (2009).
[29] R. K. Chailakhyan, V. I. Yusupov, J. V. Gerasimov, P. A. Sobolev, A. H. Tambiev, N. N. Vorobieva, A. P. Sviridov, V. N. Bagratashvili, Proliferation of normal and suppressed bone marrow stromal stem cells under physical actions, The twentieth Ann. Int. Laser Physics Workshop (LPHYS'11), Sarajevo, p. 169 (2011).
[30] V. I. Yusupov, V. M. Chudnovskii, V. N. Bagra-tashvili, “Laser-Induced Hydrodynamics in Water-Saturated Biotissues. 1. Generation of Bubbles in Liquid," Laser Phys. 20, 1641–1647 (2010).
[31] V. I. Yusupov, V. M. Chudnovskii, V. N. Bagra-tashvili, “Laser-induced hydrodynamics in water-saturated biotissues: 2. Effect on delivery fiber," Laser Phys. 21, 1230–1234 (2011).
[32] V. I. Yusupov, V. M. Chudnovskii, V. N. Bagra-tashvili, “Laser-Induced Hydrodynamics In Water And Biotissues Nearby Optical Fiber Tip", Hydro-dynamics - Advanced Topics, H. E. Schulz, A. L. A. Simoes, R. J. Lobosco, Eds., Chap. 5, pp. 95–118, Intech, Croatia - European Union (2011).
[33] V. A. Privalov, I. V. Krochek, A. V. Lappa, “Diode laser osteoperforation and its application to osteo-myelitis treatment," Proc. SPIE 4433, 180–185 (2001).
[34] V. I. Yusupov, V. V. Bulanov, V. M. Chudnovskii, V. N. Bagratashvili, “Laser-induced hydrodynamics in water-saturated tissue: III. Optoacoustic effects," Laser Phys. 24, 015601 (2014).
[35] R. K. Chailakhyan, V. I. Yusupov, A. P. Sviridov, Y. V. Gerasimov, A. Ch. Tambiev, N. N. Vorobieva, A. I. Kuralesova, I. L. Moskvina, V. N. Bagra-tashvili, “Acousic and EHF impact on bone marrow stromal stem cells in vitro," Biomed. Radioelectron. 2, 36–42 (2013).
[36] A. J. Friedenstein, A. I. Kuralesova, “Osteogenic precursor cells of bone marrow in radiation chimeras," Transplantation 12, 99–108 (1971).
[37] R. K. Chailakhyan, V. I. Yusupov, J. V. Gerasimov, P. A. Sobolev, A. H. Tambiev, N. N. Vorobieva, A. P. Sviridov, V. N. Bagratashvili, “Effect of hy-drodynamic processes and low-intensity radiation with wavelengths 0,63 m and 7,1 mm on the pro-liferative activity of bone marrow stromal stem cells in vitro," Biomedicine 2, 24–29 (2011).
[38] Yu. F. Gorskaya, O. V. Lebedinskaya, V. G. Nes-terenko, R. Kh. Chailakhyan, Yu. V. Gerasimov, N. V. Latsinik, A. I. Kuralesova, E. N. Genkina, “Effect of -fetoprotein on the count of bone mar-row and splenic stromal precursor cells and prolif-eration of their cultural descendants," Bull. Exp. Biol. Med. 143, 140–142 (2007).
[39] R. K. Chaikhalyan, V. I. Yusupov, Yu. F. Corskaya, A. I. Kuralesova, Yu. V. Gerasimov, A. P. Sviridov, A. Kh. Tambiev, N. N. Vorobieva, A. G. Grosheva, V. V. Shishkova, I. L. Moskvina, V. N. Bagra-tashvili, “Effects of acoustic and EHF impulses on multipotent stromal cells during formation of bone marrow containing heterotopic organs in tissue engineered constructions," Bull. Exp. Biol. Med. 158, 688–691 (2015).