• Acta Optica Sinica
  • Vol. 37, Issue 12, 1202001 (2017)
Shengqiang Li*, Mengzhi Zhang, and Liangliang Yang
Author Affiliations
  • School of New Energy and Electronic Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, China
  • show less
    DOI: 10.3788/AOS201737.1202001 Cite this Article Set citation alerts
    Shengqiang Li, Mengzhi Zhang, Liangliang Yang. Electrostatic Trap Suitable for Construction of Lattices with Opened Optical Access[J]. Acta Optica Sinica, 2017, 37(12): 1202001 Copy Citation Text show less
    References

    [1] Schulz S A. Bethlem H L, van Veldhoven J, et al. Microstructured switchable mirror for polar molecules[J]. Physical Review Letters, 93, 020406(2004).

    [2] Xia Y, Yin Y L, Chen H B et al. Electrostatic surface guiding for cold polar molecules: Experimental demonstration[J]. Physical Review Letters, 100, 043003(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000100000004043003000001&idtype=cvips&gifs=Yes

    [3] Loesch H J, Scheel B. Molecules on Kepler orbits: An experimental study[J]. Physical Review Letters, 85, 2709-2712(2000). http://www.ncbi.nlm.nih.gov/pubmed/10991214

    [4] Junglen T, Rieger T, Rangwala S A et al. Two-dimensional trapping of dipolar molecules in time-varying electric fields[J]. Physical Review Letters, 92, 223001(2004). http://europepmc.org/abstract/MED/15245216

    [5] Liu Y, Yun M, Xia Y et al. Experimental generation of a cw cold CH3CN molecular beam by a low-pass energy filtering[J]. Physical Chemistry Chemical Physics, 12, 745-752(2010). http://www.ncbi.nlm.nih.gov/pubmed/20066361

    [6] Sommer C, Motsch M, Chervenkov S et al. Velocity-selected molecular pulses produced by an electric guide[J]. Physical Review A, 82, 013410(2010). http://arxiv.org/abs/1004.0968

    [7] Deng L Z, Yin J P. Beam splitter for guided polar molecules with a Y-shaped charged wire[J]. Optics Letters, 32, 1695-1697(2007). http://www.opticsinfobase.org/ol/abstract.cfm?id=138207

    [8] Deng L Z, Liang Y, Gu Z X et al. Experimental demonstration of a controllable electrostatic molecular beam splitter[J]. Physical Review Letters, 106, 140401(2011). http://europepmc.org/abstract/MED/21561169

    [9] Bethlem H L, Berden G, Meijer G. Decelerating neutral dipolar molecules[J]. Physical Review Letters, 83, 1558-1561(1999).

    [10] Bethlem H L, Berden G. Crompvoets F M H, et al. Electrostatic trapping of ammonia molecules[J]. Nature, 406, 491-494(2000).

    [11] Hudson E R, Ticknor C, Sawyer B C et al. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals[J]. Physical Review A, 73, 063404(2006). http://arxiv.org/abs/physics/0508120

    [12] Hou S Y, Li S Q, Deng L Z et al. Dependences of slowing results on both decelerator parameters and the new operating mode: Taking ND3 as an example[J]. Journal of Physics B: Atomic Molecular and Optical Physics, 46, 045301(2013). http://www.ingentaconnect.com/content/iop/jphysb/2013/00000046/00000004/art045301

    [13] Katz D P. A storage ring for polar molecules[J]. Journal of Chemical Physics, 107, 8491-8501(1997). http://scitation.aip.org/content/aip/journal/jcp/107/20/10.1063/1.475001

    [14] Zieger P C, Heiner C E et al. . Multiple packets of neutral molecules revolving for over a mile[J]. Physical Review Letters, 105, 173001(2010). http://www.ncbi.nlm.nih.gov/pubmed/21231039

    [15] Deng L Z, Xia Y, Yin J P. Electrostatic surface storage ring for cold polar molecules[J]. Journal of the Optical Society of America B, 27, A88-A92(2010). http://www.opticsinfobase.org/abstract.cfm?uri=josab-27-6-A88

    [16] Li S Q, Xu L, Deng L Z et al. Controllable electrostatic surface storage ring with opened optical access for cold polar molecules on a chip[J]. Journal of the Optical Society of America B, 31, 110-119(2014). http://www.opticsinfobase.org/abstract.cfm?URI=josab-31-1-110

    [17] Meerakker S Y T, Smeets P H M, Vanhaecke N et al. .Deceleration and electrostatic trapping of OH radical[J]. Physical Review Letters, 94, 023004(2005). http://www.ncbi.nlm.nih.gov/pubmed/15698171

    [18] Gilijamse J J, Hoekstra S, Meek S A et al. The radiative lifetime of metastable CO(a 3Π, v=0) [J]. Journal of Chemical Physics, 127, 221102(2007). http://www.ncbi.nlm.nih.gov/pubmed/18081379

    [19] Rieger T, Junglen T, Rangwala S A et al. Continuous loading of an electrostatic trap for polar molecules[J]. Physical Review Letters, 95, 173002(2005). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.173002

    [20] Kleinert J, Haimberger C, Zabawa P J et al. Trapping of ultracold polar molecules with a thin-wire electrostatic trap[J]. Physical Review Letters, 99, 143002(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000099000014143002000001&idtype=cvips&gifs=Yes

    [21] Li S Q, Xu L, Xia Y et al. Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap[J]. Chinese Physics B, 23, 123701(2014). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgwl201412025&dbname=CJFD&dbcode=CJFQ

    [22] Wang Z X, Gu Z X, Xia Y et al. Optically accessible electrostatic trap for cold polar molecules[J]. Journal of the Optical Society of America B, 30, 2348-2354(2013). http://www.opticsinfobase.org/abstract.cfm?URI=josab-30-9-2348

    [23] Schnell M, Lutzow P. Veldhoven J van, et al. A linear ac trap for polar molecules in their ground state[J]. Journal of Physical Chemistry A, 111, 7411-7419(2007).

    [24] Wang Z X, Gu Z X, Deng L Z et al. Cooling and trapping polar molecules in an electrostatic trap[J]. Chinese Physics B, 24, 053701(2015). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgwl201505038&dbname=CJFD&dbcode=CJFQ

    [25] Sun H, Wang Z X, Wang Q et al. Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap[J]. Chinese Physics B, 24, 113101(2015). http://www.cqvip.com/QK/85823A/201511/666471624.html

    [26] Raithel G, Birkl G, Kastberg A et al. Cooling and localization dynamics in optical lattices[J]. Physical Review Letters, 78, 630-633(1997). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000078000004000630000001&idtype=cvips&gifs=Yes

    [27] Hemmerich A, Weidemüller M, Esslinger T et al. Trapping atoms in a dark optical lattice[J]. Physical Review Letters, 75, 37-40(1995). http://www.ncbi.nlm.nih.gov/pubmed/10059109

    [28] Vuletic V, Chin C, Kerman A J et al. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities[J]. Physical Review Letters, 81, 5768-5771(1998). http://adsabs.harvard.edu/abs/1998PhRvL..81.5768V

    [29] Kastberg A, Phillips W D, Rolston S L et al. Adiabatic cooling of cesium to 700nK in an optical lattice[J]. Physical Review Letters, 74, 1542-1545(1995). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000074000009001542000001&idtype=cvips&gifs=Yes

    [30] Fischer M C, Madison K W, Niu Q et al. Observation of Rabi oscillations between Bloch bands in an optical potential[J]. Physical Review A, 58, 2648-2651(1998). http://adsabs.harvard.edu/abs/1998PhRvA..58.2648F

    [31] Dahan M B, Peik E, Reichel J et al. Bloch oscillations of atoms in an optical potential[J]. Physical Review Letters, 76, 4508-4511(1996). http://www.ncbi.nlm.nih.gov/pubmed/10061309

    [32] Jurczak C, Destruelle B, Sengstock K et al. Atomic transport in an optical lattice: An investigation through polarization-selective intensity correlations[J]. Physical Review Letters, 77, 1727-1730(1996). http://www.ncbi.nlm.nih.gov/pubmed/10063156

    [33] Dutta S K, Teo B K, Raithel G. Tunneling dynamics and gauge potentials in optical lattices[J]. Physical Review Letters, 83, 1934-1937(1999). http://adsabs.harvard.edu/abs/1999PhRvL..83.1934D

    [34] Weidemüller M, Hemmerich A, Gorlitz A et al. Bragg diffraction in an atomic lattice bound by light[J]. Physical Review Letters, 75, 4583-4586(1995). http://europepmc.org/abstract/MED/10059946

    [35] Pachos J K, Knight P L. Quantum computation with a one-dimensional optical lattice[J]. Physical Review Letters, 91, 107902(2003). http://www.ncbi.nlm.nih.gov/pubmed/14525507

    [36] Yin J P, Gao W J, Liu N C et al. Magnetic guide and trap for cold neutral atoms with current-carrying wires and conductors[J]. Journal of the Chinese Chemical Society, 48, 555-567(2001). http://onlinelibrary.wiley.com/doi/10.1002/jccs.200100085/pdf

    [37] Yin J P, Gao W J, Hu J J et al. Magnetic surface microtraps for realizing an array of alkali atomic Bose-Einstein condensates or Bose clusters[J]. Optics Communications, 206, 99-113(2007). http://www.sciencedirect.com/science/article/pii/S0030401802013901

    [38] Yin J P, Gao W J, Hu J J et al. Atomic magnetic lattices and their applications[J]. Chinese Physics Letters, 19, 327-330(2002). http://www.cqvip.com/Main/Detail.aspx?id=6762646

    [39] Yin J P, Gao W J, Hu J J. Arrays of microscopic magnetic traps for cold atoms and their application in atom optics[J]. Chinese Physics, 11, 472-480(2002). http://www.cqvip.com/QK/85823A/200205/6786406.html

    Shengqiang Li, Mengzhi Zhang, Liangliang Yang. Electrostatic Trap Suitable for Construction of Lattices with Opened Optical Access[J]. Acta Optica Sinica, 2017, 37(12): 1202001
    Download Citation