• High Power Laser and Particle Beams
  • Vol. 34, Issue 6, 064007 (2022)
Youwei Gong1、2, Wencai Cheng1、2, Minghua Zhao1, Xuan Li3, Duan Gu3, and Meng Zhang3、*
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • show less
    DOI: 10.11884/HPLPB202234.210491 Cite this Article
    Youwei Gong, Wencai Cheng, Minghua Zhao, Xuan Li, Duan Gu, Meng Zhang. Influence of SXFEL resistive wall wakefield on beam phase space distortion[J]. High Power Laser and Particle Beams, 2022, 34(6): 064007 Copy Citation Text show less

    Abstract

    X-ray free-electron laser (XFEL), due to its ultra-high brightness, ultra-short pulse and other characteristics, has been built worldwide. Based on the theory of wakefield, we calculate the resistive wall wakefield from the linear accelerator (linac) exit to the end of the undulator in Shanghai X-ray free electron laser (SXFEL) with bunch traveling through the 245 m stainless steel transfer line and copper beamline in undulator. Then we analyze the resistive wall wakefields which eventually lead to the distortion of the longitudinal phase space within the bunch. Finally, the theoretical predictions of influence of resistive wall wakefield are compared with experiment results on SXFEL, which shows great agreement. The detailed research provides a direction for subsequent FEL optimization.
    $ \begin{gathered} {w_\delta }(s) = \dfrac{{4{Z_0}c}}{{\pi {a^2}}}\Bigg( \dfrac{1}{3}{{\text{e}}^{ - \tfrac{s}{{{s_0}}}}}\cos \Bigg(\dfrac{{\sqrt 3 s}}{{{s_0}}}\Bigg) - \dfrac{{\dfrac{{\sqrt 2 }}{{\text{π }}}\displaystyle\int_0^\infty {{\text{d}}x{x^2}{{\text{e}}^{ - \tfrac{{s{x^2}}}{{{s_0}}}}}} }}{{{x^6} + 8}} \Bigg) \\ {s_0} = {(2{a^2}/{Z_0}{\sigma _c})^{1/3}} \\ \end{gathered} $(1)

    View in Article

    $ {W_\delta }(s) = \displaystyle\int_0^s {\lambda (s - s')} {w_\delta }(s){\text{d}}s' $(2)

    View in Article

    $ \left\{ \begin{array}{l} k = {\omega }/{c} \hfill \\ {u^*} = 1 - {{{\text{i}}\omega l}}/{{{v_{\rm{F}}}}} \hfill \\ {\delta ^{{\rm{NSE}}}} = \sqrt {\dfrac{{2c}}{{{Z_0}{\sigma _c}\omega }}} \hfill \\ \xi = \dfrac{{(1 - {\text{i}})\omega {\delta ^{{\rm{NSE}}}}\sqrt u }}{{2c}} \hfill \\ Z(k) = \dfrac{{{Z_0}}}{{2{\text{π }}a}}\displaystyle\int_0^\infty {\dfrac{{{\text{d}}q}}{{\cosh (q)}}{{\Bigg[\dfrac{{\cosh (q)}}{{\xi (k)}} - \dfrac{{{\text{i}}ka}}{q}\sinh (q)\Bigg]}^{ - 1}}} \end{array} \right. $(3)

    View in Article

    $ {W_\delta }(s) = \dfrac{c}{{2{\text{π }}}}\displaystyle\int_0^s {\lambda (s)\displaystyle\int_{ - \infty }^\infty {Z(k){{\text{e}}^{ - {\text{i}}k(s - s')}}{\text{d}}k{\text{d}}s'} } $(4)

    View in Article

    Youwei Gong, Wencai Cheng, Minghua Zhao, Xuan Li, Duan Gu, Meng Zhang. Influence of SXFEL resistive wall wakefield on beam phase space distortion[J]. High Power Laser and Particle Beams, 2022, 34(6): 064007
    Download Citation