• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 1, 1 (2023)
Sijie PIAN1、2、*, Linxiao XIA2, Zheyuan TIAN2, Geng LI1、2, Zhuning WANG1、2, and Yaoguang MA1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.01.001 Cite this Article
    PIAN Sijie, XIA Linxiao, TIAN Zheyuan, LI Geng, WANG Zhuning, MA Yaoguang. Fundamentals and research progress of radiative cooling technology[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 1 Copy Citation Text show less
    References

    [1] World Environment Situation Room [OL]. 2022, https://wesr.unep.org.

    [2] Climate Watch [OL]. 2022, https://www.climatewatchdata.org.

    [3] Shi H S, Chen Q. Building energy management decision-making in the real world: A comparative study of HVAC cooling strategies [J]. Journal of Building Engineering, 2021, 33: 101869.

    [4] Ebrahimi A, Shayegani A, Zarandi M M. Thermal performance of sustainable element in Moayedi icehouse in Iran [J]. International Journal of Architectural Heritage, 2021, 15(5): 740-756.

    [5] Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight [J]. Nature, 2014, 515(7528): 540-544.

    [6] Zhai Y, Ma Y G, David S N, et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling [J]. Science, 2017, 355(6329): 1062-1066.

    [7] Mandal J, Fu Y K, Overvig A C, et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling [J]. Science, 2018, 362(6412): 315-319.

    [8] Li T, Zhai Y, He S M, et al. A radiative cooling structural material [J]. Science, 2019, 364(6442): 760-763.

    [9] Mandal J, Yang Y, Yu N F, et al. Paints as a scalable and effective radiative cooling technology for buildings [J]. Joule, 2020, 4(7): 1350-1356.

    [10] Goldstein E A, Raman A P, Fan S H. Sub-ambient non-evaporative fluid cooling with the sky [J]. Nature Energy, 2017, 2(9): 17143.

    [11] Smith G, Gentle A. Radiative cooling: Energy savings from the sky [J]. Nature Energy, 2017, 2(9): 17142.

    [12] Zhu L X, Raman A, Wang K, et al. Radiative cooling of solar cells [J]. Optica, 2014, 1: 32-38.

    [13] Zhu L X, Raman A P, Fan S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody [J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 12282-12287.

    [14] Hsu P C, Song A Y, Catrysse P B, et al. Radiative human body cooling by nanoporous polyethylene textile [J]. Science, 2016, 353(6303): 1019-1023.

    [15] Cai L, Song A Y, Li W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling [J]. Advanced Materials, 2018, 30(35): 1802152.

    [16] Li D, Liu X, Li W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling [J]. Nature Nanotechnology, 2021, 1(2): 153-158.

    [17] Li J L, Wang X Y, Liang D, et al. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling [J]. Science Advances, 2022, 8(32): eabq0411.

    [18] Zeng S N, Pian S J, Su M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling [J]. Science, 2021, 373(6555): 692-696.

    [19] Wang S C, Jiang T Y, Meng Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation [J]. Science, 2021, 374(6574): 1501-1504.

    [20] Tang K C, Dong K C, Li J C, et al. Temperature-adaptive radiative coating for all-season household thermal regulation [J]. Science, 2021, 374(6574): 1504-1509.

    [21] Chen Z, Zhu L X, Raman A, et al. Radiative cooling to deep sub-freezing temperatures through a 24 h day-night cycle [J]. Nature Communications, 2016, 7: 13729.

    [22] Fan S H, Li W. Photonics and thermodynamics concepts in radiative cooling [J]. Nature Photonics, 2022, 1(3): 182-190.

    [23] Zou C J, Ren G H, Hossain M, et al. Metal-loaded dielectric resonator metasurfaces for radiative cooling [J]. Advanced Optical Materials, 2017, 5(20): 1700460.

    [24] Rephaeli E, Raman A, Fan S H. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling [J]. Nano Letters, 2013, 13(4): 1457-1461.

    [25] Zhu L X, Raman A, Fan S H. Color-preserving daytime radiative cooling [J]. Applied Physics Letters, 2013, 103(22): 223902.

    [26] Hossain M M, Jia B H, Gu M. A metamaterial emitter for highly efficient radiative cooling [J]. Advanced Optical Materials, 2015, 3(8): 1047-1051.

    [27] Heo S Y, Lee G J, Kim D H, et al. A Janus emitter for passive heat release from enclosures [J]. Science Advances, 2020, (36): eabb1906.

    [28] Sun K, Riedel C, Wang Y D, et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft [J]. ACS Photonics, 2017, 5(2): 495-501.

    [29] Zhang W W, Qi H, Sun A T, et al. Periodic trapezoidal VO2-Ge multilayer absorber for dynamic radiative cooling [J]. Optics Express, 2020, 28(14): 20609-20623.

    [30] Eichenfield M, Camacho R, Chan J, et al. A picogram and nanometre-scale photonic-crystal optomechanical cavity [J]. Nature, 2009, 459(7246): 550-555.

    [31] Dubey D R S, Gautam D K G. Investigation of optical properties of one-dimensional photonic crystals by coupled mode theory [J]. Optoelectronics and Advanced Materials-Rapid Communications, 2007, 1(11): 563-567.

    [32] Leung K M, Qiu Y. Multiple-scattering calculation of the two-dimensional photonic band structure [J]. Physical Review B, 1993, 48(11): 7767-7771.

    [33] Bao H, Yan C, Wang B X, et al. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling [J]. Solar Energy Materials and Solar Cells, 2017, 168: 78-84.

    [34] Huang Z F, Ruan X L. Nanoparticle embedded double-layer coating for daytime radiative cooling [J]. International Journal of Heat and Mass Transfer, 2017, 104: 890-896.

    [35] Wang L H, Jacques S L, Zheng L Q. MCML-Monte Carlo modeling of light transport in multi-layered tissues [J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146.

    [36] Shi N N, Tsai C C, Carter M J, et al. Nanostructured fibers as a versatile photonic platform: Radiative cooling and waveguiding through transverse Anderson localization [J]. Light: Science & Applications, 2018, 7: 37.

    [37] Li X Y, Peoples J, Huang Z F, et al. Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit [J]. Cell Reports Physical Science, 2020, 1(10): 100221.

    [38] Laaksonen K, Li S Y, Puisto S R, et al. Nanoparticles of TiO2 and VO2 in dielectric media: Conditions for low optical scattering, and comparison between effective medium and four-flux theories [J]. Solar Energy Materials and Solar Cells, 2014, 130: 132-137.

    [39] Wheeler M S, Aitchison J S, Chen J I L, et al. Infrared magnetic response in a random silicon carbide micropowder [J]. Physical Review B, 2009, 79(7): 073103.

    [40] Aili A, Wei Z Y, Chen Y Z, et al. Selection of polymers with functional groups for daytime radiative cooling [J]. Materials Today Physics, 2019, 10: 100127.

    [41] Yu X X, Chan J Q, Chen C. Review of radiative cooling materials: Performance evaluation and design approaches [J]. Nano Energy, 2021, 88: 106259.

    [42] Wang X, Liu X H, Li Z Y, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling [J]. Advanced Functional Materials, 2020, 30(5): 1907562.

    [43] Huang W L, Chen Y J, Luo Y, et al. Scalable aqueous processing-based passive daytime radiative cooling coatings [J]. Advanced Functional Materials, 2021, 31(19): 2010334.

    [44] Zhu R K, Hu D W, Chen Z, et al. Plasmon-enhanced infrared emission approaching the theoretical limit of radiative cooling ability [J]. Nano Letters, 2020, 20(10): 6974-6980.

    [45] Wang T, Wu Y, Shi L, et al. A structural polymer for highly efficient all-day passive radiative cooling [J]. Nature Communications, 2021, 12: 365.

    [46] Lee E, Luo T F. Black body-like radiative cooling for flexible thin-film solar cells [J]. Solar Energy Materials and Solar Cells, 2019, 194: 222-228.

    [47] Zhang H W, Ly K C S, Liu X H, et al. Biologically inspired flexible photonic films for efficient passive radiative cooling [J]. Proceedings of the National Academy of Sciences, 2020, 117(26): 14657-14666.

    [48] Hu M K, Pei G, Wang Q L, et al. Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system [J]. Applied Energy, 2016, 179: 899-908.

    [49] Song J R, Qin J, Qu J, et al. The effects of particle size distribution on the optical properties of titanium dioxide rutile pigments and their applications in cool non-white coatings [J]. Solar Energy Materials and Solar Cells, 2014, 130: 42-50.

    [50] Peoples J, Li X Y, Lv Y B, et al. A strategy of hierarchical particle sizes in nanoparticle composite for enhancing solar reflection [J]. International Journal of Heat and Mass Transfer, 2019, 131: 487-494.

    [51] Santamouris M, Synnefa A, Karlessi T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions [J]. Solar Energy, 2011, 85(12): 3085-3102.

    [52] Orel B, Gunde M K, Krainer A. Radiative cooling efficiency of white pigmented paints [J]. Solar Energy, 1993, 50(6): 477-482.

    [53] Meir M G, Rekstad J B, Lvvik O M. A study of a polymer-based radiative cooling system [J]. Solar Energy, 2002, 73(6): 403-417.

    [54] Granqvist C G, Hjortsberg A. Surfaces for radiative cooling: Silicon monoxide films on aluminum [J]. Applied Physics Letters, 1980, 3(2): 139-141.

    [55] Chae D, Kim M, Jung P H, et al. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling [J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8073-8081.

    [56] Guo J, Ju S H, Shiomi J. Design of a highly selective radiative cooling structure accelerated by materials informatics [J]. Optics Letters, 2020, 45(2): 343-346.

    [57] Chen M J, Pang D, Mandal J, et al. Designing mesoporous photonic structures for high-performance passive daytime radiative cooling [J]. Nano Letters, 2021, 21(3): 1412-1418.

    [58] Xue X, Qiu M, Li Y W, et al. Creating an eco-friendly building coating with smart subambient radiative cooling [J]. Advanced Materials, 2020, 32(42): e1906751.

    [59] Guo C Y, Pan H D, Xu Q H, et al. Current status and future perspectives of radiative sky cooling [J]. Journal of Refrigeration, 2022, 43(3): 1-14.

    [60] Zhu Y Z, Xu D K, Yang R G, et al. Effect of precipitable water and cloud coverage on performance of radiative sky cooling [J]. Chinese Journal of Refrigeration Technology, 2021, 41(3): 25-30.

    [61] Fei J L, Yang J, Lv Y Y, et al. Research on the influence of radiative sky cooling on cabin thermal comfort and air-conditioning system energy consumption [J]. Energy Conservation Technology, 2021, 39(3): 274-280.

    [62] Peng Y C, Chen J, Song A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric [J]. Nature Sustainability, 2018, 1(2): 105-112.

    [63] Cai L L, Peng Y C, Xu J W, et al. Temperature regulation in colored infrared-transparent polyethylene textiles [J]. Joule, 2019, 3(6): 1478-1486.

    [64] Zhu B, Li W, Zhang Q, et al. Subambient daytime radiative cooling textile based on nanoprocessed silk [J]. Nature Nanotechnology, 2021, 1(12): 1342-1348.

    [65] Hsu P C, Liu C, Song A Y, et al. A dual-mode textile for human body radiative heating and cooling [J]. Science Advances, 2017, 3(11): e1700895.

    [66] Luo H, Zhu Y N, Xu Z Q, et al. Outdoor personal thermal management with simultaneous electricity generation [J]. Nano Letters, 2021, 21(9): 3879-3886.

    [67] Ly K C S, Liu X H, Song X K, et al. A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating [J]. Advanced Functional Materials, 2022, 32(31): 2203789.

    [68] Zhang X A, Yu S J, Xu B B, et al. Dynamic gating of infrared radiation in a textile [J]. Science, 2019, 363(6427): 619-623.

    [69] Li X Q, Ma B R, Dai J Y, et al. Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management [J]. Science Advances, 2021, 7(51): eabj7906.

    [70] Li X H, Liu C, Feng S P, et al. Broadband light management with thermochromic hydrogel microparticles for smart windows [J]. Joule, 2019, 3(1): 290-302.

    [71] Zhou Y, Wang S C, Peng J Q, et al. Liquid thermo-responsive smart window derived from hydrogel [J]. Joule, 2020, 4(11): 2458-2474.

    [72] Lin C J, Hur J, Chao C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation [J]. Science Advances, 2022, 8(17): eabn7359.

    [73] Wu S H, Chen M K, Barako M, et al. Thermal homeostasis using microstructured phase-change materials [J]. Optica, 2017, 4(11): 1390-1396.

    [74] Ono M, Chen K F, Li W, et al. Self-adaptive radiative cooling based on phase change materials [J]. Optics Express, 2018, 2(18): A777-A787.

    PIAN Sijie, XIA Linxiao, TIAN Zheyuan, LI Geng, WANG Zhuning, MA Yaoguang. Fundamentals and research progress of radiative cooling technology[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 1
    Download Citation