• Acta Photonica Sinica
  • Vol. 51, Issue 2, 0251204 (2022)
Lilong MA, Minchao XIE, Wei OU, Yang MEI*, and Baoping ZHANG
Author Affiliations
  • Laboratory of Micro/Nano-Optoelectronics,School of Electronic Science and Engineering,Xiamen University,Xiamen,Fujian 361005,China
  • show less
    DOI: 10.3788/gzxb20225102.0251204 Cite this Article
    Lilong MA, Minchao XIE, Wei OU, Yang MEI, Baoping ZHANG. Fabrication and Lasing Properties of Silicon-based GaN Microcavities(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251204 Copy Citation Text show less
    References

    [1] I ROLAND, Y ZENG, X CHECOURY et al. Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators. Optics Express, 24, 9602-9610(2016).

    [2] C WEISBUCH, NISHIOKA , A ISHIKAWA et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 69, 3314-3317(1992).

    [3] M FENG, J WANG, R ZHOU et al. On-chip integration of GaN-based laser, modulator, and photodetector grown on Si. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-5(2018).

    [4] S NAKAMURA, T MUKAI, M SENOH. Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Applied Physics Letters, 64, 1687-1689(1994).

    [5] M ATHANASIOU, R SMITH, B LIU et al. Room temperature continuous-wave green lasing from an InGaN microdisk on silicon. Scientific Reports, 4, 1-5(2014).

    [6] H HU, B TANG, H WAN et al. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy, 69, 104427(2020).

    [7] X ZHAO, B TANG, L GONG et al. Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes. Applied Physics Letters, 118, 182102(2021).

    [8] J WU, H LONG, X SHI et al. Polariton lasing in InGaN quantum wells at room temperature. Opto-Electronic Advances, 2, 190014(2019).

    [9] A BHATTACHARYA, M Z BATEN, I IORSH et al. Room-temperature spin polariton diode laser. Physical Review Letters, 119, 067701(2017).

    [10] H KÖNIG, M ALI, W BERGBAUER et al. Visible GaN laser diodes: from lowest thresholds to highest power levels(2019).

    [11] E GIL-SANTOS, C BAKER, D T NGUYEN et al. High-frequency nano-optomechanical disk resonators in liquids. Nature Nanotechnology, 10, 810-816(2015).

    [12] K J VAHALA. Optical microcavities: Photonic technologies. Nature, 424, 839-846(2003).

    [13] K YANG, Y Z HAO, J L WU et al. Mode characteristics for gapless-coupled twin circular-side square microcavity lasers. Journal of the Optical Society of America B, 38, 1017-1023(2021).

    [14] I AKASAKI, H AMANO, Y KOIDE et al. Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0. Journal of Crystal Growth, 98, 209-219(1989).

    [15] T MURASE, T TANIKAWA, Y HONDA et al. Optical properties of (1-101) InGaN/GaN MQW stripe laser structure on Si substrate. Physica Status Solidi C, 8, 2160-2162(2011).

    [16] Y ZHANG, X ZHANG, K H LI et al. Advances in III-nitride semiconductor microdisk lasers. Physica Status Solidi A, 212, 960-973(2015).

    [17] X HAN, Y LIU, Y REN et al. Semipolar{1 122}InGaN/GaN multiple quantum well optically pumped laser diodes selectively grown on Si (111) substrates. Materials Science in Semiconductor Processing, 91, 327-332(2019).

    [18] Y SUN, K ZHOU, S QIAN et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nature Photonics, 10, 595-599(2016).

    [19] Y TANG, M FENG, P WEN et al. Degradation study of InGaN-based laser diodes grown on Si. Journal of Physics D: Applied Physics, 53, 395103(2020).

    [20] M FENG, Z LI, J WANG et al. Room-temperature electrically injected AlGaN-based near-ultraviolet laser grown on Si. Acs Photonics, 5, 699-704(2018).

    [21] A C TAMBOLI, E D HABERER, R SHARMA et al. Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nature photonics, 1, 61-64(2007).

    [22] Y ZHANG, Z MA, X ZHANG et al. Optically pumped whispering-gallery mode lasing from 2-μm GaN micro-disks pivoted on Si. Applied Physics Letters, 104, 221106(2014).

    [23] G Y ZHU, F F QIN, J Y GUO et al. Unidirectional ultraviolet whispering gallery mode lasing from floating asymmetric circle GaN microdisk. Applied Physics Letters, 111, 202103(2017).

    [24] D LI, H GAO, H WANG et al. Room-temperature electrically pumped InGaN-based microdisk laser grown on Si. Optics Express, 26, 5043-5051(2018).

    [25] J WANG, M FENG, R ZHOU et al. Continuous-wave electrically injected GaN-on-Si microdisk laser diodes. Optics Express, 28, 12201-12208(2020).

    [26] I AHARONOVICH, A WOOLF, K J RUSSELL et al. Low threshold, room-temperature microdisk lasers in the blue spectral range. Applied Physics Letters, 103, 021112(2013).

    [27] J SELLES, C BRIMONT, G CASSABOIS et al. Deep-UV nitride-on-silicon microdisk lasers. Scientific Reports, 6, 1-7(2016).

    [28] J SELLES, V CREPEL, I ROLAND et al. III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet. Applied Physics Letters, 109, 231101(2016).

    [29] C ZHAO, C W TANG, J WANG et al. Ultra-low threshold green InGaN quantum dot microdisk lasers grown on silicon. Applied Physics Letters, 117, 31104(2020).

    [30] A DADGAR, A STRITTMATTER, J BLÄSING et al. Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon. Physica Status Solidi, 1583-1606(2010).

    [31] A DADGAR, F SCHULZE, T ZETTLER et al. In situ measurements of strains and stresses in GaN heteroepitaxy and its impact on growth temperature. Journal of Crystal Growth, 272, 72-75(2004).

    [32] Q SUN, W YAN, M FENG et al. GaN-on-Si blue/white LEDs: epitaxy, chip, and package. Journal of Semiconductors, 37, 044006(2016).

    [33] J WANG, M FENG, R ZHOU et al. Continuous-wave electrically injected GaN-on-Si microdisk laser diodes. Optics express, 28, 12201-12208(2020).

    [34] Y SUN, K ZHOU, Q SUN et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nature Photonics, 10, 595-599(2016).

    [35] R BUTTÉ, N GRANDJEAN. III-nitride photonic cavities. Nanophotonics, 9, 569-598(2020).

    [36] T J PUCHTLER, A WOOLF, T ZHU et al. Effect of threading dislocations on the quality factor of InGaN/GaN microdisk cavities. Acs Photonics, 2, 137-143(2015).

    [37] Y MEI, M XIE, H XU et al. Electrically injected GaN-based microdisk towards an efficient whispering gallery mode laser. Optics Express, 29, 5598-5606(2021).

    [38] D WANG, T ZHU, R A OLIVER et al. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers. Optics Letters, 43, 799-802(2018).

    [39] F TABATABA-VAKILI, C BRIMONT, B ALLOING et al. Analysis of low-threshold optically pumped III-nitride microdisk lasers. Applied Physics Letters, 117, 121103(2020).

    [40] Ž GAČEVIĆ, G ROSSBACH, R BUTTÉ et al. Q-factor of (In, Ga) N containing III-nitride microcavity grown by multiple deposition techniques. Journal of Applied Physics, 114, 233102(2013).

    [41] I ROUSSEAU, G CALLSEN, G JACOPIN et al. Optical absorption and oxygen passivation of surface states in III-nitride photonic devices. Journal of Applied Physics, 123, 113103(2018).

    [42] N LOBO, A KADIR, M R LASKAR et al. Influence of growth parameters on the sub-bandgap absorption of MOVPE-grown GaN measured using photothermal deflection spectroscopy. Journal of Crystal Growth, 310, 4747-4750(2008).

    [43] P D MIERRY, H LAHRECHE, S HAFFOUZ et al. Sub-bandgap optical absorption of MOVPE-GaN grown under controlled nucleation. Materials Science and Engineering: B, 59, 24-28(1999).

    [44] S S SCHAD, B NEUBERT, C EICHLER et al. Absorption and light scattering in InGaN-on-sapphire-and AlGaInP-based light-emitting diodes. Journal of Lightwave Technology, 22, 2323-2332(2004).

    Lilong MA, Minchao XIE, Wei OU, Yang MEI, Baoping ZHANG. Fabrication and Lasing Properties of Silicon-based GaN Microcavities(Invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251204
    Download Citation