• Advanced Photonics
  • Vol. 1, Issue 6, 066004 (2019)
Jiaji Li1、†, Alex Matlock2, Yunzhe Li2, Qian Chen1, Chao Zuo1、*, and Lei Tian2、*
Author Affiliations
  • 1Nanjing University of Science and Technology, School of Electronic and Optical Engineering, Nanjing, Jiangsu, China
  • 2Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.1.6.066004 Cite this Article Set citation alerts
    Jiaji Li, Alex Matlock, Yunzhe Li, Qian Chen, Chao Zuo, Lei Tian. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 2019, 1(6): 066004 Copy Citation Text show less
    References

    [1] Y. Park, C. Depeursinge, G. Popescu. Quantitative phase imaging in biomedicine. Nat. Photonics, 12, 578-589(2018).

    [2] F. Merola et al. Tomographic flow cytometry by digital holography. Light Sci. Appl., 6, e16241(2017).

    [3] D. J. Stephens, V. J. Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [4] G. Popescu. Quantitative Phase Imaging of Cells and Tissues(2011).

    [5] B. Kemper, G. Von Bally. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt., 47, A52-A61(2008).

    [6] P. Ferraro et al. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt. Lett., 31, 1405-1407(2006).

    [7] Z. Wang et al. Spatial light interference microscopy (SLIM). Opt. Express, 19, 1016-1026(2011).

    [8] Y. Baek et al. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [9] L. Waller, L. Tian, G. Barbastathis. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt. Express, 18, 12552-12561(2010).

    [10] J. A. Rodrigo, T. Alieva. Rapid quantitative phase imaging for partially coherent light microscopy. Opt. Express, 22, 13472-13483(2014).

    [11] L. Tian, L. Waller. Quantitative differential phase contrast imaging in an LED array microscope. Opt. Express, 23, 11394-11403(2015).

    [12] C. Zuo et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep., 7, 7654(2017).

    [13] J. Li et al. Efficient quantitative phase microscopy using programmable annular LED illumination. Biomed. Opt. Express, 8, 4687-4705(2017).

    [14] W. Choi et al. Tomographic phase microscopy. Nat. Methods, 4, 717-719(2007).

    [15] Y. Cotte et al. Marker-free phase nanoscopy. Nat. Photonics, 7, 113-117(2013).

    [16] T. H. Nguyen et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun., 8, 210(2017).

    [17] Y. Sung et al. Optical diffraction tomography for high resolution live cell imaging. Opt. Express, 17, 266-277(2009).

    [18] A. Kuś et al. Tomographic phase microscopy of living three-dimensional cell cultures. J. Biomed. Opt., 19, 046009(2014).

    [19] R. Chandramohanadas et al. Biophysics of malarial parasite exit from infected erythrocytes. PLoS One, 6, e20869(2011).

    [20] J. Yoon et al. Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed. Opt. Express, 6, 3865-3875(2015).

    [21] K. Lee et al. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors, 13, 4170-4191(2013).

    [22] A. Yakimovich et al. Label-free digital holo-tomographic microscopy reveals virus-induced cytopathic effects in live cells. mSphere, 3, e00599(2018).

    [23] Y. Sung et al. Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy. PLoS One, 7, e49502(2012).

    [24] Y. Li et al. Quantitative phase imaging reveals matrix stiffness-dependent growth and migration of cancer cells. Sci. Rep., 9, 248(2019).

    [25] A. Zhikhoreva et al. Morphological changes in the ovarian carcinoma cells of wistar rats induced by chemotherapy with cisplatin and dioxadet. Biomed. Opt. Express, 9, 5817-5827(2018).

    [26] S. O. Isikman et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl. Acad. Sci. U. S. A., 108, 7296-7301(2011).

    [27] D. Kim et al. Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography. Methods, 136, 160-167(2018).

    [28] S. Shin et al. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett., 40, 5407-5410(2015).

    [29] S. Shin et al. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep., 8, 9183(2018).

    [30] R. Ling et al. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express, 9, 2130-2141(2018).

    [31] J. M. Soto, J. A. Rodrigo, T. Alieva. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express, 25, 15699-15712(2017).

    [32] J. A. Rodrigo, J. M. Soto, T. Alieva. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed. Opt. Express, 8, 5507-5517(2017).

    [33] J. Li et al. Three-dimensional tomographic microscopy technique with multi-frequency combination with partially coherent illuminations. Biomed. Opt. Express, 9, 2526-2542(2018).

    [34] M. H. Jenkins, T. K. Gaylord. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy. Appl. Opt., 54, 9213-9227(2015).

    [35] M. Chen, L. Tian, L. Waller. 3D differential phase contrast microscopy. Biomed. Opt. Express, 7, 3940-3950(2016).

    [36] R. Eckert, Z. F. Phillips, L. Waller. Efficient illumination angle self-calibration in Fourier ptychography. Appl. Opt., 57, 5434-5442(2018).

    [37] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [38] L. Tian et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2, 904-911(2015).

    [39] L. Tian, L. Waller. 3D intensity and phase imaging from light-field measurements in an LED array microscope. Optica, 2, 104-111(2015).

    [40] L. Tian, J. Wang, L. Waller. 3D differential phase-contrast microscopy with computational illumination using an LED array. Opt. Lett., 39, 1326-1329(2014).

    [41] L. Tian et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope. Biomed. Opt. Express, 5, 2376-2389(2014).

    [42] S. Mehta, C. Sheppard. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt. Lett., 34, 1924-1926(2009).

    [43] J. Schindelin et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9, 676-682(2012).

    [44] J. Lobo et al. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine. J. Tissue Eng. Regener. Med., 10, 539-553(2016).

    [45] T. A. Zangle, M. A. Teitell. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat. Methods, 11, 1221-1228(2014).

    [46] Z. Sadrearhami et al. Antibiofilm nitric oxide-releasing polydopamine coatings. ACS Appl. Mater. Interfaces, 11, 7320-7329(2019).

    [47] T. Stiernagle. Maintenance of C. elegans(2006).

    [48] E. Kim et al. Long-term imaging of Caenorhabditis elegans using nanoparticle-mediated immobilization. PLoS One, 8, e53419(2013).

    [49] A. K. Corsi, B. Wightman, M. Chalfie. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics, 200, 387-407(2015).

    [50] P. Hosseini et al. Pushing phase and amplitude sensitivity limits in interferometric microscopy. Opt. Lett., 41, 1656-1659(2016).

    [51] T. Juffmann, A. de los Ríos Sommer, S. Gigan. Local optimization of wave-fronts for optimal sensitivity phase imaging (LowPhi). Opt. Commun., 454, 124484(2020).

    [52] G. Osnabrugge, S. Leedumrongwatthanakun, I. M. Vellekoop. A convergent born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media. J. Comput. Phys., 322, 113-124(2016).

    [53] K. M. Ashman, C. M. Bird, S. E. Zepf. Detecting bimodality in astronomical datasets. Astr. Jrnl., 108, 2348-2361(1994).

    [54] U. S. Kamilov et al. Learning approach to optical tomography. Optica, 2, 517-522(2015).

    [55] S. Chowdhury et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica, 6, 1211-1219(2019).

    [56] J. Lim et al. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl., 8, 82(2019).

    [57] T. Nguyen et al. Deep learning approach for Fourier ptychography microscopy. Opt. Express, 26, 26470-26484(2018).

    [58] Y. Xue et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019).

    [59] Y. Rivenson et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [60] A. Sinha et al. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [61] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [62] S. Feng et al. Fringe pattern analysis using deep learning. Adv. Photonics, 1, 025001(2019).

    [63] M. Lyu et al. Learning-based lensless imaging through optically thick scattering media. Adv. Photonics, 1, 036002(2019).

    [64] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921-943(2019).

    CLP Journals

    [1] Jiaji Li, Alex Matlock, Yunzhe Li, Qian Chen, Lei Tian, Chao Zuo. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy[J]. Photonics Research, 2020, 8(12): 1818

    Jiaji Li, Alex Matlock, Yunzhe Li, Qian Chen, Chao Zuo, Lei Tian. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 2019, 1(6): 066004
    Download Citation