• Matter and Radiation at Extremes
  • Vol. 6, Issue 4, 048401 (2021)
O. N. Rosmej1、2、3、a), X. F. Shen4, A. Pukhov4, L. Antonelli5, F. Barbato6, M. Gyrdymov2, M. M. Günther1, S. Zähter1, V. S. Popov7、8, N. G. Borisenko9, and N. E. Andreev7、8
Author Affiliations
  • 1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
  • 2Goethe University, Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
  • 3Helmholtz Forschungsakademie Hessen für FAIR (HFHF), Campus Frankfurt am Main, Max-von-Laue-Straße 12, 60438 Frankfurt am Main, Germany
  • 4Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf, Germany
  • 5York Plasma Institute, University of York, Church Lane, Heslington, York YO10 5DQ, United Kingdom
  • 6University of Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405 Talence, France
  • 7Joint Institute for High Temperatures, RAS, Izhorskaya St. 13, Bldg. 2, 125412 Moscow, Russia
  • 8Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, 141700 Dolgoprudny, Moscow Region, Russia
  • 9P. N. Lebedev Physical Institute, RAS, Leninsky Prospekt 53, 119991 Moscow, Russia
  • show less
    DOI: 10.1063/5.0042315 Cite this Article
    O. N. Rosmej, X. F. Shen, A. Pukhov, L. Antonelli, F. Barbato, M. Gyrdymov, M. M. Günther, S. Zähter, V. S. Popov, N. G. Borisenko, N. E. Andreev. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6(4): 048401 Copy Citation Text show less
    References

    [1] S.Fourmaux, S.Corde, K. T.Phuoc et al. Single shot phase contrast imaging using laser-produced Betatron x-ray beams. Opt. Lett., 36, 2426(2011).

    [2] S.Kneip, F.Dollar, C.McGuffey et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett., 99, 093701(2011).

    [3] S.Schleede, K.Khrennikov, J.Wenz et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source. Nat. Commun., 6, 7568(2015).

    [4] N. C.Lopes, J. M.Cole, J. C.Wood et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep., 5, 13244(2015).

    [5] J. C.Wood, K.Poder, D. J.Chapman et al. Ultrafast imaging of laser driven shock waves using betatron x-rays from laser wake-field accelerator. Sci. Rep., 8, 11010(2018).

    [6] A.Ravasio, M.Koenig, S.Le Pape et al. Hard x-ray radiography for density measurement in shock compressed matter. Phys. Plasmas, 15, 060701(2008).

    [7] J.Lindl. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933(1995).

    [8] A.Lifschitz, S. Y.Kalmykov, J.Ferri, X.Davoine. Electron acceleration and generation of high brilliance x-ray radiation in kilojoule, sub-picosecond laser-plasma interactions. Phys. Rev. Accel. Beams, 19, 10130(2016).

    [9] F.Albert, A. G. R.Thomas. Applications of laser wakefield accelerator-based light sources. Plasma Phys. Controlled Fusion, 58, 103001(2016).

    [10] R.Shah, K. T.Phuoc, A.Rousse et al. Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett., 93, 135005(2004).

    [11] J.Ju, K.Svensson, A.D?pp et al. Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes. Appl. Phys. Lett., 100, 191106(2012).

    [12] M. R.Islam, S.Cipiccia, B.Ersfeld et al. Gamma-rays from harmonically resonant betatron oscillation in plasma wake. Nat. Phys., 7, 867(2011).

    [13] V.Malka. Laser plasma accelerators. Phys. Plasmas, 19, 055501(2012).

    [14] J. M.Dawson, T.Tajima. Laser electron accelerator. Phys. Rev. Lett., 43, 267(1979).

    [15] L. M.Gorbunov, N. E.Andreev, V. I.Kirsanov et al. Resonant excitation of wake-fields by a laser pulse in a plasma. JETP Lett., 55, 571-577(1992).

    [16] N. E.Andreev, V. I.Kirsanov, L. M.Gorbunov. Stimulated processes and self-modulation of short intense laser pulses in laser wake field accelerator. Phys. Plasmas, 2, 2573-2582(1995).

    [17] F.Albert, J. L.Shaw, N.Lemos et al. Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses. Phys. Rev. Lett., 118, 134801(2017).

    [18] J. L.Shaw, F.Albert, N.Lemos et al. Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities. Nucl. Fusion, 59, 032003(2018).

    [19] H. Y.Wang, B.Liu, X. Q.Yan, M.Zepf. Gamma-ray emission in near critical density plasmas at laser intensities of 1021 W/cm2. Phys. Plasmas, 22, 033102(2015).

    [20] T. W.Huang, A. P. L.Robinson, C. T.Zhou et al. Characteristics of betatron radiation from direct-laser-accelerated electrons. Phys. Rev. E, 93, 063203(2016).

    [21] O. N.Rosmej, S.Zaehter, N. E.Andreev et al. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys., 21, 043044(2019).

    [22] M. M.Günther, O. N.Rosmej, M.Gyrdymov et al. High-current laser-driven beams of relativistic electrons for high energy density research. Plasma Phys. Controlled Fusion, 62, 115024(2020).

    [23] J.Limpouch, S. Y.Gus’kov, P.Nicola?, V. T.Tikhonchuk. Laser-supported ionization wave in under-dense gases and foams. Phys. Plasmas, 18, 103114(2011).

    [24] A. M.Khalenkov, N. G.Borisenko, V.Kmetik et al. Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma. Fusion Sci. Technol., 51, 655-664(2007).

    [25] Z.-M.Sheng, A.Pukhov, J.Meyer-ter-Vehn. Particle acceleration in relativistic laser channels. Phys. Plasmas, 6, 2847(1999).

    [26] A.Pukhov. Strong field interaction of laser radiation. Rep. Prog. Phys., 66, 47-101(2003).

    [27] N. E.Andreev, P. R.Levashov, O. N.Rosmej, L. P.Pugachev. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets. Nucl. Instrum. Methods Phys. Res., Sect. A, 829, 88-93(2016).

    [28] A.Blazevic, B.Aurand, V.Bagnoud et al. Commissioning and early experiments of the PHELIX facility. Appl. Phys. B, 100, 137-150(2010).

    [29] T. S.Rosinson, R.De Angelis, F.Consoli et al. Generation of intense quasi-electrostatic fields due to deposition of particles accelerated by petawatt-range-laser-matter interactions. Sci. Rep., 9, 8551(2019).

    [30] A.Pukhov. Tree-dimensional electromagnetic relativistic particle-in-cell code VLPL (virtual laser plasma lab). J. Plasma Phys., 61, 425-433(1999).

    [31] J. D.Jackson. Classical Electrodynamics(1998).

    [32] I.Kostyukov, A.Pukhov, S.Kiselev. X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett., 93, 135004(2004).

    [33] C. S.Brady, R.Duclous, C. P.Ridgers et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).

    [34] H. X.Chang, X. B.Li, B.Qiao et al. Identifying the quantum radiation reaction by using colliding ultraintense lasers in gases. Phys. Rev. A, 98, 052119(2018).

    [35] L. P.Pugachev, N. E.Andreev. Characterization of accelerated electrons generated in foams under the action of petawatt lasers. J. Phys.: Conf. Ser., 1147, 012080(2019).

    [36] L.Antonelli, D.Mancelli, F.Barbato et al. X-ray phase-contrast imaging for laser-induced shock-waves. Europhys. Lett., 125, 35002(2019).

    [37] S.Atzeni, F.Barbato, D.Batani et al. Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source. Sci. Rep., 9, 18805(2019).

    [38] J. M.Cowley. Diffraction Physics, 481(1995).

    [39] V. A.Smalyuk, D. A.Martinez, J. O.Kane et al. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF. Phys. Rev. Lett., 114, 215004(2015).

    [40] R.Betti, R.Nora, W.Theobald et al. Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett., 114, 045001(2015).

    O. N. Rosmej, X. F. Shen, A. Pukhov, L. Antonelli, F. Barbato, M. Gyrdymov, M. M. Günther, S. Zähter, V. S. Popov, N. G. Borisenko, N. E. Andreev. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity[J]. Matter and Radiation at Extremes, 2021, 6(4): 048401
    Download Citation