• Optical Instruments
  • Vol. 41, Issue 1, 85 (2019)
WANG Cheng1,*, LU Yufei1, and LIU Qing2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1005-5630.2019.01.015 Cite this Article
    WANG Cheng, LU Yufei, LIU Qing. Spectral technique in the detection of foodborne pathogenic bacteria[J]. Optical Instruments, 2019, 41(1): 85 Copy Citation Text show less
    References

    [2] MACFADDEN D R, BOGOCH I I, ANDREWS J R. Advances in diagnosis, treatment, and prevention of invasive Salmonella infections[J]. Current Opinion in Infectious Diseases, 2016, 29(5): 453.

    [4] LIU D, YU Z, HUANG Y, et al. An immuno-magnetic nanobead probe competitive assay for rapid detection of Salmonella choleraesuis[J]. Journal of Nanoscience & Nanotechnology, 2016, 16(3): 2291.

    [5] ZOU D C, CHANG S Y, RU Z, et al. Optimal conditions for rapid detection of Salmonella spp. via potassium manganese trifluoride nanoprobe-based nuclear magnetic resonance[J]. Modern Food Science & Technology, 2017, 33(6): 321-325.

    [6] XIA S, YU Z, LIU D, et al. Developing a novel immunochromatographic test strip with gold magnetic bifunctional nanobeads(GMBN) for efficient detection of Salmonella choleraesuis, in milk[J]. Food Control, 2016, 59(1): 507-512.

    [9] GIRARD V, MAILLER S, CHETRY M, et al. Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser desorption ionisation time of flight mass spectrometry[J]. Mycoses, 2016, 59(8): 535-538.

    [10] FALL B, LOC I, SAMB-BA B, et al. The ongoing revolution of MALDI-TOF mass spectrometry for microbiology reaches tropical Africa[J]. American Journal of Tropical Medicine & Hygiene, 2015, 92(3): 641-647.

    [11] FAN W T, QIN T T, BI R R, et al. Performance of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for rapid identification of streptococci: a review[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2017, 36(6): 1005-1012.

    [12] NEVILLE S A, LECORDIER A, ZIOCHOS H, et al. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification[J]. Journal of Clinical Microbiology, 2011, 49(8): 2980-2984.

    [15] MOKHTARZADEH A, DOLATABADI J E N, ABNOUS K, et al. Nanomaterial-based cocaine aptasensors[J]. Biosensors & Bioelectronics, 2015, 68: 95-106.

    [16] B.HME K, BARROS-VELáZQUEZ J, CALO-MATA P. Chapter 2 -Fingerprinting for detecting contaminants in food[M]//Food Protection and Security. Amsterdam: Elsevier, 2017: 15-42.

    [18] ZARNOWIEC P, MIZERA A, CHRAPEK M, et al. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS[J]. Innate Immunity, 2016, 22(5): 325-335.

    [19] WANG Y D, LI X L, LIU Z X, et al. Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy[J]. Nuclear Science and Techniques, 2017, 28(4): 38-43.

    [20] TOLEDO M, GUTIéRREZ M C, SILES J A, et al. Chemometric analysis and NIR spectroscopy to evaluate odorous impact during the composting of different raw materials[J]. Journal of Cleaner Production, 2017, 167: 154-162.

    [21] BITTNER M, KR.HMER A, SCHENK R, et al. NIR spectroscopy of Actaea racemosa L. rhizome -en route to fast and low-cost quality assessment[J]. Planta Medica, 2017, 83(12/13): 1085-1096.

    [22] ZHANG J, HOU YH, CHANG X H, et al. Rapid detection of foodborne Vibrio parahaemolyticus, based on a near-infrared immunochromatographic technique[J]. Modern Food Science & Technology, 2017, 33(5): 282-287.

    [23] XU Y, KUTSANEDZIE F Y H, SUN H, et al. Rapid Pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy[J]. Food Analytical Methods, 2018, 11(4): 1199-1208.

    [25] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

    [26] POLISETTI S, BAIG N F, MORALESSOTO N, et al. Spatial mapping of pyocyanin in Pseudomonas aeruginosa bacterial communities using surface enhanced Raman scattering[J]. Applied Spectroscopy, 2017, 71(2): 215-223.

    [27] GAO W, LI B, YAO R, et al. Intuitive label-free SERS detection of bacteria using aptamer-based in situ Ag nanoparticles synthesis[J]. Analytical Chemistry, 2017, 89(18): 9836-9842.

    [28] PEARSON B, WANG P, PANG S, et al. Innovative sandwich assay with dual optical and SERS sensing mechanisms for bacterial detection[J]. Analytical Methods, 2017, 9: 4732-4739.

    [29] CHEN L, MUNGROO N, DAIKUARA L, et al. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids[J]. Journal of Nanobiotechnology, 2015, 13(1): 1-9.

    [30] MUNGROO N A, OLIVEIRA G, NEETHIRAJAN S. SERS based point-of-care detection of food-borne pathogens[J]. Microchimica Acta, 2016, 183(2): 697-707.

    [31] MOSIERBOSS P A. Review on SERS of bacteria[J]. Biosensors, 2017, 7(4): 51.

    [32] WANG T, ZENG L H, LI D L. A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum[J]. Applied Spectroscopy Reviews, 2017, 52(10): 883-908.

    [33] SILVA A S, QUINTELAS C, FERREIRA E C, et al. Exploiting intrinsic fluorescence spectroscopy to discriminate between Acinetobacter calcoaceticus-Acinetobacter baumannii complex species[J]. RSC Advances, 2017, 7(14): 8581-8588.

    [36] YANG D, ZHOU H, HAISCH C, et al. Reproducible E. coli detection based on label-free SERS and mapping[J]. Talanta, 2016, 146: 457-463.

    [37] KAHRAMAN M, ZAMALEEVA A I, FAKHRULLIN RF, et al. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering.[J]. Analytical & Bioanalytical Chemistry, 2009, 395(8): 2559-2567.

    [38] ZHOU H, YANG D, IVLEVA N P, et al. SERS detection of bacteria in water by in situ coating with Ag nanoparticles[J]. Analytical Chemistry, 2014, 86(3): 1525-1533.

    [39] CHEN L, MUNGROO N, DAIKUARA L, et al. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids[J]. Journal of Nanobiotechnology, 2015, 13(1): 1-9.

    [40] NEUGEBAUER U, R.SCH P, POPP J. Raman spectroscopy towards clinical application: drug monitoring and pathogen identification[J]. International Journal of Antimicrobial Agents, 2015, 46: S35-S39.

    [41] HU J J, CHAI Y. Blocking non-specific binding for phage-based magnetoelastic biosensors[J]. Biosensors Journal, 2015, 4(2): 130.

    [42] HUANG X, XU Z, MAO Y, et al. Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces.[J]. Biosensors & Bioelectronics, 2015, 66: 184-190.

    [43] FRATAMICO P M, STROBAUGH T P, MEDINA M B, et al. Detection of Escherichia coli O157: H7 using a surface plasmon resonance biosensor[J]. Biotechnology Techniques, 1998, 12(7): 571-576.

    [44] CHEN S, MOONEY M H, ELLIOTT C T, et al. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis[J]. Trends in Analytical Chemistry, 2010, 29(11): 1305-1315.

    [45] PASHAZADEH P, MOKHTARZADEH A, HASANZADEH M, et al. Nano-materials for use in sensing of salmonella infections: recent advances[J]. Biosensors & Bioelectronics, 2017, 87: 1050-1064.

    [46] NGUYEN H H, YI S Y, WOUBIT A, et al. A portable surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium[J]. Applied Science & Convergence Technology, 2016, 25(3): 61-65.

    [47] OH S Y, HEON S, SHUKLA S, et al. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat[J]. Scientific Reports, 2017, 7(1): 10130.

    [48] JO Y, JUNG J, KIM M H, et al. Label-free identification of individual bacteria using Fourier transform light scattering[J]. Optics Express, 2015, 23(12): 15792-15805.

    [49] HUFFMAN D E, SEREBRENNIKOVA Y M, SMITH JM, et al. Reagentless bacterial identification using a combination of multiwavelength transmission and angular scattering spectroscopy[J]. Journal of Spectroscopy, 2016, 2016: 5436821.

    [51] WANG C, GUO X, FANG B, et al. Study of back-scattering microspectrum for stomach cells at single-cell scale[J]. Journal of Biomedical Optics, 2010, 15(4): 040505.