• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 3, 1350049 (2014)
Sheng Song1, Wei Chen1、2, and Feifan Zhou1、*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University Guangzhou 510631, P. R. China
  • 2Department of Engineering and Physics University of Central Oklahoma Oklahoma 73034, USA
  • show less
    DOI: 10.1142/s1793545813500491 Cite this Article
    Sheng Song, Wei Chen, Feifan Zhou. Effects of LPLI on microglial phagocytosis in LPS-induced neuroinflammation model[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1350049 Copy Citation Text show less
    References

    [1] V. H. Perry, J. A. Nicoll, C. Holmes, "Microglia in neurodegenerative disease," Nat. Rev. Neurol. 6, 193–201 (2010).

    [2] L. Minati, T. Edginton, M. G. Bruzzone, G. Giaccone, "Current concepts in Alzheimer's disease: A multidisciplinary review," Am. J. Alzheimers Dis. Other Demen. 24, 95–121 (2009).

    [3] G. A. Garden, T. Moller, "Microglia biology in health and disease," J. Neuroimmune Pharmacol. 1, 127–137 (2006).

    [4] A. K. Stalder, A. Pagenstecher, N. C. Yu, C. Kincaid, C. S. Chiang, M. V. Hobbs, F. E. Bloom, I. L. Campbell, "Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia," J. Immunol. 159, 1344–1351 (1997).

    [5] M. L. Block, L. Zecca, J. S. Hong, "Microgliamediated neurotoxicity: Uncovering the molecular mechanisms," Nat. Rev. Neurosci. 8, 57–69 (2007).

    [6] N. Ben-Dov, G. Shefer, A. Irintchev, A. Wernig, U. Oron, O. Halevy, "Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro," Biochim. Biophys. Acta 1448, 372–380 (1999).

    [7] F. Wang, T. S. Chen, D. Xing, J. J. Wang, Y. X. Wu, "Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation," Lasers Surg. Med. 36, 2–7 (2005).

    [8] G. Shefer, I. Barash, U. Oron, O. Halevy, "Lowenergy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts," Biochim. Biophys. Acta 1593, 131–139 (2003).

    [9] D. Hawkins, N. Houreld, H. Abrahamse, "Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing," Ann. N. Y. Acad. Sci. 1056, 486–493 (2005).

    [10] C. E. de Araujo, M. S. Ribeiro, R. Favaro, D. M. Zezell, T. M. Zorn, "Ultrastructural and autoradiographical analysis show a faster skin repair in He-Ne laser-treated wounds," J. Photochem. Photobiol. B 86, 87–96 (2007).

    [11] L. Zhang, D. Xing, D. Zhu, Q. Chen, "Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKC activation," Cell Physiol. Biochem. 22, 215–222 (2008).

    [12] H. Zhang, S. Wu, D. Xing, "Inhibition of Abeta(25- 35)-induced cell apoptosis by Low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation," Cell. Signal 24, 224–232 (2012).

    [13] L. Van Aelst, C. D'Souza-Schorey, "Rho GTPases and signaling networks," Genes Dev. 11, 2295–2322 (1997).

    [14] W. E. Allen, G. E. Jones, J. W. Pollard, A. J. Ridley, "Rho, Rac and Cdc42 regulate actin organisation and cell adhesion in macrophages," J. Cell Sci. 110, 707–720 (1997).

    [15] D. Cox, P. Chang, Q. Zhang, P. G. Reddy, G. M. Bokoch, S. Greenberg, "Requirements for both rac1 and cdc42 in membrane ruffling and phagocytosis in leukocytes," J. Exp. Med. 186, 1487–1494 (1997).

    [16] X. Gao, T. Chen, D. Xing, F. Wang, Y. Pei, X. Wei, "Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation," J. Cell. Physiol. 206, 441–448 (2006).

    [17] Y. Zhang, D. Xing, L. Liu, "PUMA promotes Bax translocation by both directly interacting with Bax and by competitive binding to Bcl-X L during UVinduced apoptosis," Mol. Biol. Cell. 20, 3077–3087 (2009).

    [18] X. D. Pan, Y. G. Zhu, N. Lin, J. Zhang, Q. Y. Ye, H. P. Huang, X. C. Chen, "Microglial phagocytosis induced by fibrillar beta-amyloid is attenuated by oligomeric beta-amyloid: Implications for Alzheimer's disease," Mol. Neurodegener. 6, 45 (2011).

    [19] J. M. Blander, R. Medzhitov, "Regulation of phagosome maturation by signals from toll-like receptors," Science 304, 1014–1018 (2004).

    [20] T. Joneson, M. McDonough, D. Bar-Sagi, L. Van Aelst, "RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase," Science, 274, 1374–1376 (1996).

    [21] C. Albertinazzi, A. Cattelino, I. de Curtis, "Rac GTPases localize at sites of actin reorganization during dynamic remodeling of the cytoskeleton of normal embryonic fibroblasts," J. Cell. Sci. 112(Pt 21), 3821–3831 (1999).

    [22] F. Castellano, P. Montcourrier, P. Chavrier, "Membrane recruitment of Rac1 triggers phagocytosis," J. Cell. Sci. 113 (Pt 17), 2955–2961 (2000).

    [23] K. Volling, A. Thywissen, A. A. Brakhage, H. P. Saluz, "Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling," Cell. Microbiol. 13, 1130–1148 (2011).

    [24] N. Michio, K. Masahiro, M. Michiyuki, N. Shigekazu, "Spatiotemporal activation of Rac1 for engulfment of apoptotic cells," Proc. Natl. Acad. Sci. USA 105, 9198–9203 (2008).

    [25] D. L. Herber, J. L. Maloney, L. M. Roth, M. J. Freeman, D. Morgan, M. N. Gordon, "Diverse microglial responses after intrahippocampal administration of lipopolysaccharide," Glia 53, 382–391 (2006).

    [26] D. C. Lee, J. Rizer, M. L. Selenica, P. Reid, C. Kraft, A. Johnson, L. Blair, M. N. Gordon, C. A. Dickey, D. Morgan, "LPS-induced inflammation exacerbates phospho-tau pathology in rTg4510 mice," J. Neuroinflammation 7, 56 (2010).

    [27] A. Schindl, M. Schindl, H. Pernerstorfer-Schon, K. Kerschan, R. Knobler, L. Schindl, "Diabetic neuropathic foot ulcer: Successful treatment by lowintensity laser therapy," Dermatology 198, 314–316 (1999).

    [28] L. Zhang, D. Xing, X. Gao, S. Wu, "Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway," J. Cell. Physiol. 219, 553–562 (2009).

    [29] X. Gao, T. Chen, D. Xing, F. Wang, Y. Pei, X. Wei, "Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation," J. Cell. Physiol. 206, 441–448 (2006).

    [30] J. Zhang, D. Xing, X. Gao, "Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway," J. Cell. Physiol. 217, 518–528 (2008).

    [31] S. Matsui, Y. Tsujimoto,K. Matsushima, "Stimulatory effects of hydroxyl radical generation by Ga-Al-As laser irradiation on mineralization ability of human dental pulp cells," Biol. Pharm. Bull. 30, 27–31 (2007).

    [32] R. Lavi, A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, D. Kaplan, R. Lubart, "Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells," J. Biol.Chem. 278, 40917–40922 (2003).

    [33] D. J. Kemble, G. Sun, "Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation," Proc. Natl. Acad. Sci. USA 106, 5070–5075 (2009).

    [34] K. Jiang, J. Sun, J. Cheng, J. Y. Djeu, S. Wei, S. Sebti, "Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis," Mol. Cell. Biol. 24, 5565–5576 (2004).

    [35] Y. Qian, L. Corum, Q. Meng, J. Blenis, J. Z. Zheng, X. Shi, D. C. Flynn, B. H. Jiang, "PI3K induced actin filament remodeling through Akt and p70S6K1: Implication of essential role in cell migration," Am. J. Physiol. Cell. Physiol. 286, C153–163 (2004).

    [36] H. Akiyama, P. L. McGeer, "Brain microglia constitutively express beta-2 integrins," J. Neuroimmunol. 30, 81–93 (1990).

    [37] V. Le Cabec, S. Carreno, A. Moisand, C. Bordier, I. Maridonneau-Parini, "Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively," J. Immunol. 169, 2003–2009 (2002).

    [38] D. Zhang, X. Hu, L. Qian, S. H. Chen, H. Zhou, B. Wilson, D. S. Miller, J. S. Hong, "Microglial MAC1 receptor and PI3K are essential in mediating betaamyloid peptide-induced microglial activation and subsequent neurotoxicity," J. Neuroinflammation 8, 3 (2011).

    [39] A. Roy, A. Jana, K. Yatish, M. B. Freidt, Y. K. Fung, J. A. Martinson, K. Pahan, "Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases," Free Radic. Biol. Med. 45, 686–699 (2008).

    [40] C. Han, J. Jin, S. Xu, H. Liu, N. Li, X. Cao, "Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b," Nat. Immunol. 11, 734–742 (2010).

    Sheng Song, Wei Chen, Feifan Zhou. Effects of LPLI on microglial phagocytosis in LPS-induced neuroinflammation model[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1350049
    Download Citation