• Chinese Journal of Lasers
  • Vol. 49, Issue 10, 1002703 (2022)
Yuanyuan Zhao, Haichao Luo, Zixin Liang, Mingjie Deng, and Xuanming Duan*
Author Affiliations
  • Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong, China
  • show less
    DOI: 10.3788/CJL202249.1002703 Cite this Article Set citation alerts
    Yuanyuan Zhao, Haichao Luo, Zixin Liang, Mingjie Deng, Xuanming Duan. Micro-Nano 3D Printing Based on Photopolymerization and Its Development Status and Trends[J]. Chinese Journal of Lasers, 2022, 49(10): 1002703 Copy Citation Text show less
    References

    [1] Lu B H. Additive manufacturing: current situation and future[J]. China Mechanical Engineering, 31, 19-23(2020).

    [2] Berman B. 3-D printing: the new industrial revolution[J]. Business Horizons, 55, 155-162(2012).

    [3] Stansbury J W, Idacavage M J. 3D printing with polymers: challenges among expanding options and opportunities[J]. Dental Materials, 32, 54-64(2016).

    [4] Duncombe T A, Tentori A M, Herr A E. Microfluidics: reframing biological enquiry[J]. Nature Reviews Molecular Cell Biology, 16, 554-567(2015).

    [5] Sochol R D, Sweet E, Glick C C et al. 3D printed microfluidics and microelectronics[J]. Microelectronic Engineering, 189, 52-68(2018).

    [6] Gong H, Bickham B P, Woolley A T et al. Custom 3D printer and resin for 18 μm×20 μm microfluidic flow channels[J]. Lab on a Chip, 17, 2899-2909(2017).

    [7] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic crystals: molding the flow of light(2008).

    [8] Lin S, Fleming J G, Hetherington D L et al. A three-dimensional photonic crystal operating at infrared wavelengths[J]. Nature, 394, 251-253(1998).

    [9] Liu Y, Wang H, Ho J et al. Structural color three-dimensional printing by shrinking photonic crystals[J]. Nature Communications, 10, 4340(2019).

    [10] Lan H B, Li D C, Lu B H. Micro-and nanoscale 3D printing[J]. Scientia Sinica (Technologica), 45, 919-940(2015).

    [11] Sugioka K. Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review[J]. International Journal of Extreme Manufacturing, 1, 012003(2019).

    [12] Vaezi M, Seitz H, Yang S F. A review on 3D micro-additive manufacturing technologies[J]. The International Journal of Advanced Manufacturing Technology, 67, 1721-1754(2013).

    [13] Yang D, Liu L P, Yang H et al. Laser micro-nano three-dimensional printing[J]. Laser & Optoelectronics Progress, 55, 011411(2018).

    [14] Liu M N, Li M T, Sun H B. 3D femtosecond laser nanoprinting[J]. Laser & Optoelectronics Progress, 55, 011410(2018).

    [15] Wang R R, Zhang W C, Jin F et al. Fabrication of polyaniline microstructure via two-photon polymerization[J]. Chinese Journal of Lasers, 48, 0202006(2021).

    [16] Zhang W C, Zheng M L. Research progress of two-photon initiator with high efficiency and preparation of hydrogel microstructure in aqueous phase[J]. Chinese Journal of Lasers, 48, 0202007(2021).

    [17] Long J, Jiao B Z, Fan X H et al. Femtosecond laser assembly of one-dimensional nanomaterials and their application[J]. Chinese Journal of Lasers, 48, 0202017(2021).

    [18] Barner-Kowollik C, Bastmeyer M, Blasco E et al. 3D laser micro- and nanoprinting: challenges for chemistry[J]. Angewandte Chemie (International Ed. in English), 56, 15828-15845(2017).

    [19] Eckel Z C, Zhou C Y, Martin J H et al. Additive manufacturing of polymer-derived ceramics[J]. Science, 351, 58-62(2016).

    [20] Gräfe D, Wickberg A, Zieger M M et al. Adding chemically selective subtraction to multi-material 3D additive manufacturing[J]. Nature Communications, 9, 2788(2018).

    [21] Yu H Y, Ding H B, Zhang Q M et al. Three-dimensional direct laser writing of PEGda hydrogel microstructures with low threshold power using a green laser beam[J]. Light: Advanced Manufacturing, 2, 31(2021).

    [22] Hirt L, Reiser A, Spolenak R et al. Additive manufacturing of metal structures at the micrometer scale[J]. Advanced Materials, 29, 1604211(2017).

    [23] Ma Z C, Zhang Y L, Han B et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2, 1700413(2018).

    [24] Cao Y Y, Takeyasu N, Tanaka T et al. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction[J]. Small, 5, 1144-1148(2009).

    [25] Kotz F, Arnold K, Bauer W et al. Three-dimensional printing of transparent fused silica glass[J]. Nature, 544, 337-339(2017).

    [26] Nguyen D T, Meyers C, Yee T D et al. 3D-printed transparent glass[J]. Advanced Materials, 29, 1701181(2017).

    [27] Cooperstein I, Shukrun E, Press O et al. Additive manufacturing of transparent silica glass from solutions[J]. ACS Applied Materials & Interfaces, 10, 18879-18885(2018).

    [28] Kotz F, Quick A S, Risch P et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures[J]. Advanced Materials, 33, e2006341(2021).

    [29] Doualle T, André J C, Gallais L. 3D printing of silica glass through a multiphoton polymerization process[J]. Optics Letters, 46, 364-367(2021).

    [30] Wen X, Zhang B, Wang W et al. 3D-printed silica with nanoscale resolution[J]. Nature Materials, 20, 1506-1511(2021).

    [31] Chen Z W, Li Z Y, Li J J et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 39, 661-687(2019).

    [32] Hwa L C, Rajoo S, Noor A M et al. Recent advances in 3D printing of porous ceramics: a review[J]. Current Opinion in Solid State and Materials Science, 21, 323-347(2017).

    [33] Meza L R, Das S, Greer J R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices[J]. Science, 345, 1322-1326(2014).

    [34] Choi J W, Wicker R, Lee S H et al. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography[J]. Journal of Materials Processing Technology, 209, 5494-5503(2009).

    [35] Sun Y L, Li Q, Sun S M et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists[J]. Nature Communications, 6, 8612(2015).

    [36] Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 31, 6121-6130(2010).

    [37] Chia H N, Wu B M. Recent advances in 3D printing of biomaterials[J]. Journal of Biological Engineering, 9, 4(2015).

    [38] Wang X, Jiang M, Zhou Z W et al. 3D printing of polymer matrix composites: a review and prospective[J]. Composites Part B: Engineering, 110, 442-458(2017).

    [39] Feilden E, Ferraro C, Zhang Q et al. 3D printing bioinspired ceramic composites[J]. Scientific Reports, 7, 13759(2017).

    [40] Hu Q, Sun X Z, Parmenter C D J et al. Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction[J]. Scientific Reports, 7, 17150(2017).

    [41] Compton B G, Lewis J A. 3D-printing of lightweight cellular composites[J]. Advanced Materials, 26, 5930-5935(2014).

    [42] Song X Y, Xing J F. 3D printing technology based on two-photon polymerization[J]. CIESC Journal, 66, 3324-3332(2015).

    [43] Zheng M L, Jin F, Dong X Z et al. Two-photon photopolymerization and functional micro/nanostructure fabrication[J]. Imaging Science and Photochemistry, 35, 413-428(2017).

    [44] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences[J]. Nature Biotechnology, 21, 1369-1377(2003).

    [45] Klar T A, Wollhofen R, Jacak J. Sub-abbe resolution: from STED microscopy to STED lithography[J]. Physica Scripta, T162, 014049(2014).

    [46] Ge Q, Li Z Q, Wang Z L et al. Projection micro stereolithography based 3D printing and its applications[J]. International Journal of Extreme Manufacturing, 2, 022004(2020).

    [47] Lin W, Chen D H, Chen S C. Emerging micro-additive manufacturing technologies enabled by novel optical methods[J]. Photonics Research, 8, 1827-1842(2020).

    [48] Tumbleston J R, Shirvanyants D, Ermoshkin N et al. Continuous liquid interface production of 3D objects[J]. Science, 347, 1349-1352(2015).

    [49] Saha S K, Wang D E, Nguyen V H et al. Scalable submicrometer additive manufacturing[J]. Science, 366, 105-109(2019).

    [50] Somers P, Liang Z, Johnson J E et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses[J]. Light: Science & Applications, 10, 199(2021).

    [51] Ma W C, Qiu Y X. Mechanisms and future direction of 3D printing using photopolymerization[J]. Guangdong Chemical Industry, 46, 91-92(2019).

    [52] Skliutas E, Lebedevaite M, Kabouraki E et al. Polymerization mechanisms initiated by spatio-temporally confined light[J]. Nanophotonics, 10, 1211-1242(2021).

    [53] Kiefer P, Hahn V, Nardi M et al. Sensitive photoresists for rapid multiphoton 3D laser micro- and nanoprinting[J]. Advanced Optical Materials, 8, 2000895(2020).

    [54] Ligon S C, Liska R, Stampfl J et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews, 117, 10212-10290(2017).

    [55] Yang L, Münchinger A, Kadic M et al. On the Schwarzschild effect in 3D two-photon laser lithography[J]. Advanced Optical Materials, 7, 1901040(2019).

    [56] Layani M, Wang X F, Magdassi S. Novel materials for 3D printing by photopolymerization[J]. Advanced Materials, 30, e1706344(2018).

    [57] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 22, 3578-3582(2010).

    [58] Hull C W. Apparatus for production of three-dimensional objects by stereolithography[P].

    [59] Andre J C, Mehaute A L, Witte O D. Device for producing a model of an industrial part[P].

    [60] Huang J G, Qin Q, Wang J. A review of stereolithography: processes and systems[J]. Processes, 8, 1138(2020).

    [61] Zhao Z, Tian X X, Song X Y. Engineering materials with light: recent progress in digital light processing based 3D printing[J]. Journal of Materials Chemistry C, 8, 13896-13917(2020).

    [62] Do M T, Nguyen T T N, Li Q et al. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing[J]. Optics Express, 21, 20964-20973(2013).

    [63] Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization[J]. Optics Letters, 22, 132-134(1997).

    [64] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [65] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).

    [66] Li L J, Fourkas J T. Multiphoton polymerization[J]. Materials Today, 10, 30-37(2007).

    [67] Malinauskas M, Žukauskas A, Bičkauskaitė G et al. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses[J]. Optics Express, 18, 10209-10221(2010).

    [68] Lee K S, Kim R H, Yang D Y et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization[J]. Progress in Polymer Science, 33, 631-681(2008).

    [69] Maruo S, Fourkas J T. Recent progress in multiphoton microfabrication[J]. Laser & Photonics Review, 2, 100-111(2008).

    [70] Hohmann J K, Renner M, Waller E H et al. Three-dimensional μ-printing: an enabling technology[J]. Advanced Optical Materials, 3, 1488-1507(2015).

    [71] Ha Y M, Choi J W, Lee S H. Mass production of 3-D microstructures using projection microstereolithography[J]. Journal of Mechanical Science and Technology, 22, 514-521(2008).

    [72] Sampson K L, Deore B, Go A et al. Multimaterial vat polymerization additive manufacturing[J]. ACS Applied Polymer Materials, 3, 4304-4324(2021).

    [73] Hahn V, Mayer F, Thiel M et al. 3-D laser nanoprinting[J]. Optics and Photonics News, 30, 28-35(2019).

    [74] Vyatskikh A, Delalande S, Kudo A et al. Additive manufacturing of 3D nano-architected metals[J]. Nature Communications, 9, 593(2018).

    [75] Golvari P, Kuebler S M. Fabrication of functional microdevices in SU-8 by multi-photon lithography[J]. Micromachines, 12, 472(2021).

    [76] Otuka A J G, Tomazio N B, Paula K T et al. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds[J]. Polymers, 13, 1994(2021).

    [77] Sun H B, Tanaka T, Kawata S. Three-dimensional focal spots related to two-photon excitation[J]. Applied Physics Letters, 80, 3673-3675(2002).

    [78] Li Y, Hong M H. Parallel laser micro/nano-processing for functional device fabrication[J]. Laser & Photonics Reviews, 14, 1900062(2020).

    [79] Ritschdorff E T, Nielson R, Shear J B. Multi-focal multiphoton lithography[J]. Lab on a Chip, 12, 867-871(2012).

    [80] Zandrini T, Shan O, Parodi V et al. Multi-foci laser microfabrication of 3D polymeric scaffolds for stem cell expansion in regenerative medicine[J]. Scientific Reports, 9, 11761(2019).

    [81] Zhang B, Kowsari K, Serjouei A et al. Reprocessable thermosets for sustainable three-dimensional printing[J]. Nature Communications, 9, 1831(2018).

    [82] Emami M M, Barazandeh F, Yaghmaie F. Scanning-projection based stereolithography: method and structure[J]. Sensors and Actuators A: Physical, 218, 116-124(2014).

    [83] Zheng X Y, Lee H, Weisgraber T H et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 344, 1373-1377(2014).

    [84] Zheng X Y, Smith W, Jackson J et al. Multiscale metallic metamaterials[J]. Nature Materials, 15, 1100-1106(2016).

    [85] Han D, Lu Z, Chester S A et al. Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography[J]. Scientific Reports, 8, 1963(2018).

    [86] Limaye A S, Rosen D W. Process planning method for mask projection micro-stereolithography[J]. Rapid Prototyping Journal, 13, 76-84(2007).

    [87] Zhao X, Zhao Y, Li M D et al. Efficient 3D printing via photooxidation of ketocoumarin based photopolymerization[J]. Nature Communications, 12, 2873(2021).

    [88] Wu J, Guo J, Linghu C et al. Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface[J]. Nature Communications, 12, 6070(2021).

    [89] Wang Z, Yang W G, Qin Y T et al. Digital micro-mirror device-based light curing technology and its biological applications[J]. Optics & Laser Technology, 143, 107344(2021).

    [90] Choi J W, Wicker R B, Cho S H et al. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography[J]. Rapid Prototyping Journal, 15, 59-70(2009).

    [91] Zheng X Y, Deotte J, Alonso M P et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system[J]. Review of Scientific Instruments, 83, 125001(2012).

    [92] Kim K R, Yi J, Cho S H et al. SLM-based maskless lithography for TFT-LCD[J]. Applied Surface Science, 255, 7835-7840(2009).

    [93] Watson G P, Aksyuk V, Simon M E et al. Spatial light modulator for maskless optical projection lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 24, 2852-2856(2006).

    [94] Chan K F, Feng Z Q, Yang R et al. High-resolution maskless lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2, 331-339(2003).

    [95] Hull C W. The birth of 3D printing[J]. Research-Technology Management, 58, 25-30(2015).

    [96] Zhang X, Jiang X N, Sun C. Micro-stereolithography of polymeric and ceramic microstructures[J]. Sensors and Actuators A: Physical, 77, 149-156(1999).

    [97] Maruo S, Ikuta K. Three-dimensional microfabrication by use of single-photon-absorbed polymerization[J]. Applied Physics Letters, 76, 2656-2658(2000).

    [98] Maruo S, Ikuta K. Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization[J]. Sensors and Actuators A: Physical, 100, 70-76(2002).

    [99] Thiel M, Fischer J, von Freymann G et al. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm[J]. Applied Physics Letters, 97, 221102(2010).

    [100] Do M T, Li Q, Nguyen T T N et al. High aspect ratio submicrometer two-dimensional structures fabricated by one-photon absorption direct laser writing[J]. Microsystem Technologies, 20, 2097-2102(2014).

    [101] Mueller P, Thiel M, Wegener M. 3D direct laser writing using a 405 nm diode laser[J]. Optics Letters, 39, 6847-6850(2014).

    [102] Sun C, Fang N, Wu D M et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators A: Physical, 121, 113-120(2005).

    [103] Kang M S, Han C, Jeon H. Submicrometer-scale pattern generation via maskless digital photolithography[J]. Optica, 7, 1788-1795(2020).

    [104] Zhang X Z, Xia F, Xu J J. The mechanisms and research progress of laser fabrication technologies beyond diffraction limit[J]. Acta Physica Sinica, 66, 144207(2017).

    [105] Wang S H, Yu Y, Liu H L et al. Sub-10-nm suspended nano-web formation by direct laser writing[J]. Nano Futures, 2, 025006(2018).

    [106] Sun H B, Matsuo S, Misawa H. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin[J]. Applied Physics Letters, 74, 786-788(1999).

    [107] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 80, 312-314(2002).

    [108] Takada K, Sun H B, Kawata S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting[J]. Applied Physics Letters, 86, 071122(2005).

    [109] Xing J F, Dong X Z, Chen W Q et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency[J]. Applied Physics Letters, 90, 131106(2007).

    [110] Dong X Z, Zhao Z S, Duan X M. Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication[J]. Applied Physics Letters, 92, 091113(2008).

    [111] Song Y, Dong X Z, Zhao Z S et al. Investigation into ultimate resolution by femtosecond laser two-photon fabrication technique[J]. High Power Laser and Particle Beams, 23, 1780-1784(2011).

    [112] Juodkazis S, Mizeikis V, Seet K K et al. Two-photon lithography of nanorods in SU-8 photoresist[J]. Nanotechnology, 16, 846-849(2005).

    [113] Tan D F, Li Y, Qi F J et al. Reduction in feature size of two-photon polymerization using SCR500[J]. Applied Physics Letters, 90, 071106(2007).

    [114] Scott T F, Kloxin C J, Forman D L et al. Principles of voxel refinement in optical direct write lithography[J]. Journal of Materials Chemistry, 21, 14150-14155(2011).

    [115] Fischer J, Mueller J B, Quick A S et al. Exploring the mechanisms in STED-enhanced direct laser writing[J]. Advanced Optical Materials, 3, 221-232(2015).

    [116] Li L J, Gattass R R, Gershgoren E et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 324, 910-913(2009).

    [117] Scott T F, Kowalski B A, Sullivan A C et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 324, 913-917(2009).

    [118] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 324, 917-921(2009).

    [119] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy[J]. Optical Materials Express, 1, 614-624(2011).

    [120] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 7, 22-44(2013).

    [121] Cao Y Y, Xie F, Zhang P D et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 44(2017).

    [122] Fourkas J T, Petersen J S. 2-colour photolithography[J]. Physical Chemistry Chemical Physics: PCCP, 16, 8731-8750(2014).

    [123] Liaros N, Fourkas J T. Ten years of two-color photolithography[J]. Optical Materials Express, 9, 3006-3020(2019).

    [124] Wollhofen R, Katzmann J, Hrelescu C et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 21, 10831-10840(2013).

    [125] Gan Z, Cao Y, Evans R A et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 4, 2061(2013).

    [126] Chu W, Tan Y X, Wang P et al. Centimeter-height 3D printing with femtosecond laser two-photon polymerization[J]. Advanced Materials Technologies, 3, 1700396(2018).

    [127] Tičkūnas T, Paipulas D, Purlys V. 4Pi multiphoton polymerization[J]. Applied Physics Letters, 116, 031101(2020).

    [128] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005).

    [129] Matsuo S, Juodkazis S, Misawa H. Femtosecond laser microfabrication of periodic structures using a microlens array[J]. Applied Physics A, 80, 683-685(2005).

    [130] Jesacher A, Booth M J. Parallel direct laser writing in three dimensions with spatially dependent aberration correction[J]. Optics Express, 18, 21090-21099(2010).

    [131] Dong X Z, Zhao Z S, Duan X M. Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing[J]. Applied Physics Letters, 91, 124103(2007).

    [132] Formanek F, Takeyasu N, Tanaka T et al. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization[J]. Optics Express, 14, 800-809(2006).

    [133] Hahn V, Kiefer P, Frenzel T et al. Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials[J]. Advanced Functional Materials, 30, 1907795(2020).

    [134] Hu Y L, Chen Y H, Ma J Q et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Applied Physics Letters, 103, 141112(2013).

    [135] Maibohm C, Silvestre O F, Borme J et al. Multi-beam two-photon polymerization for fast large area 3D periodic structure fabrication for bioapplications[J]. Scientific Reports, 10, 8740(2020).

    [136] Hofmann O, Stollenwerk J, Loosen P. Design of multi-beam optics for high throughput parallel processing[J]. Journal of Laser Applications, 32, 012005(2020).

    [137] Harinarayana V, Shin Y C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review[J]. Optics & Laser Technology, 142, 107180(2021).

    [138] Yang L, Qian D D, Xin C et al. Two-photon polymerization of microstructures by a non-diffraction multifoci pattern generated from a superposed Bessel beam[J]. Optics Letters, 42, 743-746(2017).

    [139] Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms[J]. Optics Express, 22, 24217-24223(2014).

    [140] Manousidaki M, Papazoglou D G, Farsari M et al. 3D holographic light shaping for advanced multiphoton polymerization[J]. Optics Letters, 45, 85-88(2019).

    [141] Kim D, So P T C. High-throughput three-dimensional lithographic microfabrication[J]. Optics Letters, 35, 1602-1604(2010).

    [142] Gittard S D, Nguyen A, Obata K et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator[J]. Biomedical Optics Express, 2, 3167-3178(2011).

    [143] Jenness N J, Wulff K D, Johannes M S et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator[J]. Optics Express, 16, 15942-15948(2008).

    [144] Lin H, Jia B H, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication[J]. Optics Letters, 36, 406-408(2011).

    [145] Obata K, Koch J, Hinze U et al. Multi-focus two-photon polymerization technique based on individually controlled phase modulation[J]. Optics Express, 18, 17193-17200(2010).

    [146] Geng Q, Wang D, Chen P et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization[J]. Nature Communications, 10, 2179(2019).

    [147] Yang D, Liu L P, Gong Q H et al. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering[J]. Macromolecular Rapid Communications, 40, e1900041(2019).

    [148] Bertsch A, Zissi S, Jézéquel J Y et al. Microstereophotolithography using a liquid crystal display as dynamic mask-generator[J]. Microsystem Technologies, 3, 42-47(1997).

    [149] Lin X C, Liu H G. Continuous liquid interface production 3D printing technology and its application in fabrication of architecture models[J]. Acta Optica Sinica, 36, 0816002(2016).

    [150] Walker D A, Hedrick J L, Mirkin C A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface[J]. Science, 366, 360-364(2019).

    [151] de Beer M P, van der Laan H L, Cole M A et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning[J]. Science Advances, 5, eaau8723(2019).

    [152] Huang J G, Ware H O T, Hai R H et al. Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers[J]. Advanced Materials, 33, e2005672(2021).

    [153] Yin H, Ding Y, Zhai Y et al. Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography[J]. Nature Communications, 9, 4096(2018).

    [154] Zhu G H, van Howe J, Durst M et al. Simultaneous spatial and temporal focusing of femtosecond pulses[J]. Optics Express, 13, 2153-2159(2005).

    [155] Jing C R, Wang Z H, Cheng Y. Three-dimensional micro-and nano-machining based on spatiotemporal focusing technique of femtosecond laser[J]. Laser & Optoelectronics Progress, 54, 040005(2017).

    [156] Yih J N, Hu Y Y, Sie Y D et al. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device[J]. Optics Letters, 39, 3134-3137(2014).

    [157] Li Y C, Cheng L C, Chang C Y et al. Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation[J]. Optics Express, 20, 19030-19038(2012).

    [158] Liu Y H, Zhao Y Y, Jin F et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 21, 3915-3921(2021).

    [159] Shusteff M, Browar A E M, Kelly B E et al. One-step volumetric additive manufacturing of complex polymer structures[J]. Science Advances, 3, eaao5496(2017).

    [160] Li F, Thickett S C, Maya F et al. Rapid additive manufacturing of 3D geometric structures via dual-wavelength polymerization[J]. ACS Macro Letters, 9, 1409-1414(2020).

    [161] Regehly M, Garmshausen Y, Reuter M et al. Xolography for linear volumetric 3D printing[J]. Nature, 588, 620-624(2020).

    [162] Brenner D J, Hall E J. Computed tomography: an increasing source of radiation exposure[J]. The New England Journal of Medicine, 357, 2277-2284(2007).

    [163] Kelly B E, Bhattacharya I, Heidari H et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 363, 1075-1079(2019).

    [164] Loterie D, Delrot P, Moser C. High-resolution tomographic volumetric additive manufacturing[J]. Nature Communications, 11, 852(2020).

    [165] Zhao Y Y, Zhang Y L, Zheng M L et al. Three-dimensional Luneburg lens at optical frequencies[J]. Laser & Photonics Reviews, 10, 665-672(2016).

    [166] Jonušauskas L, Gailevičius D, Rekštytė S et al. Mesoscale laser 3D printing[J]. Optics Express, 27, 15205-15221(2019).

    [167] Jonušauskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale[J]. Journal of Optics, 20, 053001(2018).

    [168] Chin S Y, Dikshit V, Meera Priyadarshini B et al. Powder-based 3D printing for the fabrication of device with micro and mesoscale features[J]. Micromachines, 11, 658(2020).

    [169] Accardo A, Courson R, Riesco R et al. Direct laser fabrication of meso-scale 2D and 3D architectures with micrometric feature resolution[J]. Additive Manufacturing, 22, 440-446(2018).

    [170] Wan X W, Menon R. Proximity-effect correction for 3D single-photon optical lithography[J]. Applied Optics, 55, A1-A7(2016).

    [171] Saha S K, Divin C, Cuadra J A et al. Effect of proximity of features on the damage threshold during submicron additive manufacturing via two-photon polymerization[J]. Journal of Micro-and Nano-Manufacturing, 5, 031002(2017).

    [172] Covarrubias L P, Arnoux C, Carlier Q et al[C], 11349, 113490O(2020).

    [173] Zheng L, Kurselis K, El-Tamer A et al. Nanofabrication of high-resolution periodic structures with a gap size below 100 nm by two-photon polymerization[J]. Nanoscale Research Letters, 14, 1-9(2019).

    [174] He R, Landowne J, Currie J et al. Three-dimensional printing of large objects with high resolution by scanning lithography[J]. The International Journal of Advanced Manufacturing Technology, 105, 4147-4157(2019).

    [175] Wang P, Chu W, Li W B et al. Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution[J]. Micromachines, 10, 565(2019).

    [176] Tan Y X, Chu W, Wang P et al. High-throughput multi-resolution three dimensional laser printing[J]. Physica Scripta, 94, 015501(2019).

    [177] Oakdale J S, Smith R F, Forien J B et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping[J]. Advanced Functional Materials, 27, 1702425(2017).

    [178] Jonušauskas L, Baravykas T, Andrijec D et al. Stitchless support-free 3D printing of free-form micromechanical structures with feature size on-demand[J]. Scientific Reports, 9, 17533(2019).

    [179] Bunea A I, del Castillo Iniesta N, Droumpali A et al. Micro 3D printing by two-photon polymerization: configurations and parameters for the nanoscribe system[J]. Micro, 1, 164-180(2021).

    [180] Stender B, Hilbert F, Dupuis Y et al. Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range[J]. Advanced Optical Technologies, 8, 225-231(2019).

    [181] Dehaeck S, Scheid B, Lambert P. Adaptive stitching for meso-scale printing with two-photon lithography[J]. Additive Manufacturing, 21, 589-597(2018).

    [182] Wen S B, Bhaskar A, Zhang H J. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution[J]. Journal of Micromechanics and Microengineering, 28, 075011(2018).

    [183] Gross A J, Bertoldi K. Additive manufacturing of nanostructures that are delicate, complex, and smaller than ever[J]. Small, 15, e1902370(2019).

    [184] Bauer J, Guell Izard A, Zhang Y F et al. Programmable mechanical properties of two-photon polymerized materials: from nanowires to bulk[J]. Advanced Materials Technologies, 4, 1900146(2019).

    [185] Ovsianikov A, Viertl J, Chichkov B et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication[J]. ACS Nano, 2, 2257-2262(2008).

    [186] Stichel T, Hecht B, Steenhusen S et al. Two-photon polymerization setup enables experimental mapping and correction of spherical aberrations for improved macroscopic structure fabrication[J]. Optics Letters, 41, 4269-4272(2016).

    [187] Bougdid Y, Sekkat Z. Voxels optimization in 3D laser nanoprinting[J]. Scientific Reports, 10, 10409(2020).

    [188] Tičkūnas T, Paipulas D, Purlys V. Dynamic voxel size tuning for direct laser writing[J]. Optical Materials Express, 10, 1432-1439(2020).

    [189] Fujishiro Y, Furukawa T, Maruo S. Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography[J]. Optics Express, 28, 12342-12351(2020).

    [190] Chang T J, Vaut L, Voss M et al. Micro and nanoscale 3D printing using optical pickup unit from a gaming console[J]. Communications Physics, 4, 23(2021).

    [191] Rothenbach C A, Gupta M C. High resolution, low cost laser lithography using a Blu-ray optical head assembly[J]. Optics and Lasers in Engineering, 50, 900-904(2012).

    [192] Hahn V, Messer T, Bojanowski N M et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting[J]. Nature Photonics, 15, 932-938(2021).

    [193] Braun P V, Brongersma M L. Photochemistry democratizes 3D nanoprinting[J]. Nature Photonics, 15, 871-873(2021).

    Yuanyuan Zhao, Haichao Luo, Zixin Liang, Mingjie Deng, Xuanming Duan. Micro-Nano 3D Printing Based on Photopolymerization and Its Development Status and Trends[J]. Chinese Journal of Lasers, 2022, 49(10): 1002703
    Download Citation