• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 379-2103221403-2 (2021)
Xiaoyan ZHANG1、2、3, Xinyue LIU1、2, Jinhua YAN1、2, Yaohang GU1、2, and Xiwei QI3、4、*
Author Affiliations
  • 11. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
  • 22. School of Resources and Materials, Northeastern University at Qinhuangdao Branch, Qinhuangdao 066004, China
  • 33. Key Laboratory of Dielectric and Electrolyte Functional Material, Qinhuangdao 066004, China
  • 44. College of Metallurgy and Energy, North China of Science and Technology, Tangshan 063210, China
  • show less
    DOI: 10.15541/jim20200500 Cite this Article
    Xiaoyan ZHANG, Xinyue LIU, Jinhua YAN, Yaohang GU, Xiwei QI. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 379-2103221403-2 Copy Citation Text show less
    References

    [1] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [2] B CANTOR, H CHANG I T, P KNIGHT et al. Microstructural development in equiatomic multicomponent alloys. Materials Science Engineering A, 375-377, 213-218(2004).

    [3] Alloyed pleasures: multimetallic cocktails. Current Science, 85, 1404-1406(2003).

    [5] J ZHOU Y, Y ZHANG, L WANG Y et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters, 90, 181904-1(2007).

    [6] W ZHOU, M FU L, P LIU et al. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 85, 90-97(2017).

    [7] Z SZKLARZ, J LEKKI, P BOBROWSKI et al. The effect of SiC nanoparticles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 215, 385-392(2018).

    [9] K MISHRA, RAJESH P P SAHAY, R S ROHIT. Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. Journal of Materials Science, 54, 4433-4443(2019).

    [12] H CHEN, M XIANG H, Z DAI F et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 35, 1700-1705(2019).

    [13] J GILD, J BRAUN, K KAUFMANN et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 5, 337-343(2019).

    [14] Y QIN, X LIU J, F LI et al. A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 8, 148-152(2019).

    [15] X LIU J, Q SHEN X, Y WU et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 9, 503-510(2020).

    [16] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485(2015).

    [17] A SARKAR, R DJENADIC, D WANG et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 38, 2318-2327(2018).

    [18] P CHEN K, T PEI X, L TANG et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 38, 4161-4164(2018).

    [19] J DABROWA, M STYGAR, A MIKUŁA et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Materials Letters, 216, 32-36(2018).

    [20] C JIANG S, T HU, J GILD et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 142, 116-120(2018).

    [21] Y DONG, K REN, H LU Y et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 39, 2574-2579(2019).

    [22] F LI, L ZHOU, X LIU J et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 8, 576-582(2019).

    [23] M ZHANG, X ZHANG, S DAS et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite. Journal of Materials Chemistry C, 7, 10551-10560(2019).

    [24] M ZHANG, Y ZHANG X, W QI X et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics. Ceramics International, 44, 21269-21276(2018).

    [25] X DONG G, W MA S, J DU et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceramics International, 35, 2069-2075(2009).

    [26] D KREUER K. Proton-conducting oxides. Annual Review of Materials Research, 33, 333-359(2003).

    [27] S WRIGHTON M, L MORSE D, B ELLIS A et al. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. ChemInform, 7, 44-48(1976).

    [28] L JI, D MCDANIEL M, J WANG S et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotechnology, 10, 84-90(2015).

    [29] M BIESUZ, S FU, J DONG et al. High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x perovskite synthesis by reactive spark plasma sintering. Journal of Asian Ceramic Societies, 7, 127-132(2019).

    [30] Y ZHOU S, P PU Y, W ZHANG Q et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 46, 7430-7437(2020).

    [31] D BÉRARDAN, S FRANGER, K MEENA A et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 4, 9536-9541(2016).

    [32] Y ZHANG, X YANG, K LIAW P. Alloy design and properties optimization of high-entropy alloys. JOM, 64, 830-838(2012).

    [33] D SHANNON R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, Foundations of Crystallography, A32, 751-767(1976).

    [34] G PAN W, H CAO M, H HAO et al. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 40, 49-55(2020).

    [35] A MERINO N, P BARBERO B, P ELOY et al. La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Applied Surface Science, 253, 1489-1493(2006).

    [36] N OSENCIAT, D BÉRARDAN, D DRAGOE et al. Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. Journal of the American Ceramic Society, 102, 6156-6162(2019).

    [37] G WU J, J WANG. Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. Journal of the American Ceramic Society, 93, 2795-2803(2010).

    [38] L BAI Y, H ZHAO, J CHEN et al. Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceramics International, 42, 10304-10309(2016).

    Xiaoyan ZHANG, Xinyue LIU, Jinhua YAN, Yaohang GU, Xiwei QI. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 379-2103221403-2
    Download Citation