• Chinese Journal of Lasers
  • Vol. 51, Issue 12, 1202410 (2024)
Jialong Guo1, Tao Wei1,*, Jingsong Wei2,**, Jing Hu1..., Miao Cheng1, Qianqian Liu1, Ruirui Wang1, Wanfei Li1 and Bo Liu1,***|Show fewer author(s)
Author Affiliations
  • 1Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu , China
  • 2Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL240577 Cite this Article Set citation alerts
    Jialong Guo, Tao Wei, Jingsong Wei, Jing Hu, Miao Cheng, Qianqian Liu, Ruirui Wang, Wanfei Li, Bo Liu. Research Progress of High‐Resolution Direct Laser Writing Lithography Based on Phase Change Thin Film (Invited)[J]. Chinese Journal of Lasers, 2024, 51(12): 1202410 Copy Citation Text show less
    References

    [1] Sebastian E M, Jain S K, Purohit R et al. Nanolithography and its current advancements[J]. Materials Today: Proceedings, 26, 2351-2356(2020).

    [2] Howell S T, Grushina A, Holzner F et al. Thermal scanning probe lithography-a review[J]. Microsystems & Nanoengineering, 6, 21(2020).

    [3] Wang S, Zhou Z, B.Li et al. Progresses on new generation laser direct writing technique[J]. Materials Today Nano, 16, 100142(2021).

    [4] Randall J N, Owen J H G, Lake J et al. Next generation of extreme-resolution electron beam lithography[J]. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, 37, 061605(2019).

    [5] He S, Tian R, Wu W et al. Helium-ion-beam nanofabrication: extreme processes and applications[J]. International Journal of Extreme Manufacturing, 3, 012001(2021).

    [6] Wang H Q, Wen J S, Yang Z Y et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chinese Journal of Lasers, 49, 2202009(2022).

    [7] Ai J, Du Q F, Qin Z L et al. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights[J]. Optics Express, 26, 20965-20974(2018).

    [8] He M F, Zhu D Z, Wang H Q et al. Advancements in micro-nano optical device based on two-photon direct writing[J]. Acta Optica Sinica, 43, 1623013(2023).

    [9] Li X P, Cao Y Y, Tian N et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).

    [10] Gissibl T, Thiele S, Herkommer A et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 10, 554-560(2016).

    [11] Wei R, Bao Y J. Metasurface-based multidimensional optical information encryption[J]. Chinese Journal of Lasers, 50, 1813004(2023).

    [12] van de Kerkhof M A, BenschopJ P H, BanineV Y. Lithography for now and the future[J]. Solid-State Electronics, 155, 20-26(2019).

    [13] Seisyan R P. Nanolithography in microelectronics: a review[J]. Technical Physics, 56, 1061-1073(2011).

    [14] Hu Y Q, Li L, Wang R et al. High-speed parallel plasmonic direct-writing nanolithography using metasurface-based plasmonic lens[J]. Engineering, 7, 1623-1630(2021).

    [15] Liu Y H, Zhao Y Y, Jin F et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 21, 3915-3921(2021).

    [16] Hsu S H, Chi T, Kim J et al. High-speed one-photon 3D nanolithography using controlled initiator depletion and inhibitor transport[J]. Advanced Optical Materials, 10, 2102262(2022).

    [17] Müller P, Müller R, Hammer L et al. STED-inspired laser lithography based on photoswitchable spirothiopyran moieties[J]. Chemistry of Materials, 31, 1966-1972(2019).

    [18] Wei J S[M]. Laser heat-mode lithography: principle and methods(2019).

    [19] Cai X L, Wei J S. Temperature dependence of the thermal properties of InSb materials used in data storage[J]. Journal of Applied Physics, 114, 083507(2013).

    [20] Wang Z W, Zhang K, Chen G D et al. A metal lift-off process through hyperbolic undercut of laser heat-mode lithography[J]. Materials Letters, 264, 127344(2020).

    [21] Li H, Geng Y Y, Wu Y Q. Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography[J]. Applied Physics A, 107, 221-225(2012).

    [22] Wei J S, Zhang K, Wei T et al. High-speed maskless nanolithography with visible light based on photothermal localization[J]. Scientific Reports, 7, 43892(2017).

    [23] Wang Z W, Zheng J L, Chen G D et al. Laser-assisted thermal exposure lithography: arbitrary feature sizes[J]. Advanced Engineering Materials, 23, 2001468(2021).

    [24] Wang Z W, Chen G D, Wen M et al. Electrochemical strategy for high-resolution nanostructures in laser-heat-mode resist toward next generation diffractive optical elements[J]. Small, 18, 2200249(2022).

    [25] Chen G D, Liu X, Wei T et al. Nanoscale-patterned Cr films by selective etching using a heat-mode resist: implications for X-ray beam splitter[J]. ACS Applied Nano Materials, 5, 1047-1055(2021).

    [26] Chen G D, Zheng J L, Wang Z W et al. Fabrication of micro/nano multifunctional patterns on optical glass through chalcogenide heat-mode resist AgInSbTe[J]. Journal of Alloys and Compounds, 867, 158988(2021).

    [27] Wei T, Shen W C, Cheng M et al. Corrosion selectivity and structural evolution in N doped Sb2Te thin films for lithography application[J]. Journal of Alloys and Compounds, 920, 166067(2022).

    [28] Wei T, Shen W C, Wang Y et al. Mechanism of corrosion selectivity of NSb2Te thin films in the H3PO4/HNO3 developer for direct laser writing nanolithography[J]. ACS Applied Nano Materials, 6, 12200-12210(2023).

    [29] Chen L, Yao J H, Wei T et al. Direct laser writing dry lithography of high-resolution micro-/nanostructures in AgSb4Te thin film for tunable perfect absorber[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2300430(2023).

    [30] Wei T, Shen W C, Chen X W et al. Investigation of etching selectivity and microstructure of Ag-doped Sb2Te thin film for dry lithography[J]. Semiconductor Science and Technology, 37, 035004(2022).

    [31] Wei T, Liu B, Li W F et al. CrSb2Te thin film as a dry resist and its etching mechanism for lithography application[J]. Materials Chemistry and Physics, 266, 124558(2021).

    [32] Deng C M, Geng Y Y, Wu Y Q et al. Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film[J]. Microelectronic Engineering, 103, 7-11(2013).

    [33] Chen X W, Chen L, Sun L H et al. Ge2Sb2Te5 thin film as a promising heat-mode resist for high-resolution direct laser writing lithography[J]. Physica Status Solidi (RRL)‑Rapid Research Letters, 17, 2300262(2023).

    [34] Kim J H. Effects of a metal layer on selective etching of a Ge5Sb75Te20 phase-change film[J]. Semiconductor Science and Technology, 23, 105009(2008).

    [35] Xi H Z, Liu Q, Guo S M. Phase change material Ge2Sb1.5Bi0.5Te5 possessed of both positive and negative photoresist characteristics[J]. Materials Letters, 80, 72-74(2012).

    [36] Li J Z, Zheng L R, Xi H Z et al. A study on inorganic phase-change resist Ge2Sb2(1-x)Bi2xTe5 and its mechanism[J]. Physical Chemistry Chemical Physics: PCCP, 16, 22281-22286(2014).

    [37] Li J Z, Zhang J M, Zhang H R et al. A high-selective positive-type developing technique for phase-change inorganic resist Ge2Sb2(1-x) Bi2Te5[J]. Materials Science in Semiconductor Processing, 40, 690-694(2015).

    [38] Huang Y Q, Huang R, Liu Q L et al. Realization of III-V semiconductor periodic nanostructures by laser direct writing technique[J]. Nanoscale Research Letters, 12, 12(2017).

    [39] Xi H Z, Liu Q, Tian Y et al. The study on SiO2 pattern fabrication using Ge1.5Sn0.5Sb2Te5 as resists[J]. Journal of Nanoscience and Nanotechnology, 13, 829-833(2013).

    [40] Xi H Z, Liu Q, Tian Y et al. Ge2Sb1.5Bi0.5Te5 thin film as inorganic photoresist[J]. Optical Materials Express, 2, 461-468(2012).

    [41] Chen X W, Chen L, Wang Y et al. AgGeSbTe thin film as a negative heat-mode resist for dry lithography[J]. Chinese Optics Letters, 20, 031601(2022).

    [42] Eiichi I T O, Yuko K, Morio T M A et al. TeOx-based film for heat-mode inorganic photoresist mastering[J]. Japanese Journal of Applied Physics, 44, 3574-3577(2005).

    [43] Ghosh S, Pradeep C P, Sharma S K et al. Recent advances in non-chemically amplified photoresists for next generation IC technology[J]. RSC Advances, 6, 74462-74481(2016).

    [44] Mojarad N, Gobrecht J, Ekinci Y. Beyond EUV lithography: a comparative study of efficient photoresists’ performance[J]. Scientific Reports, 5, 9235(2015).

    [45] Miura H, Toyoshima N, Hayashi Y et al. Nanometer-scale patterning of ZnS-SiO2 by Heat-mode lithography[J]. The Review of Laser Engineering, 34, 229-230(2006).

    [46] Wei T, Wei J, Zhang K et al. Laser heat-mode lithography characteristics and mechanism of ZnS-SiO2 thin films[J]. Materials Chemistry and Physics, 212, 426-431(2018).

    [47] Wei T, Zhang K, Wei J S et al. Micro/nanolithography of transparent thin films through laser-induced release of phase-transition latent-heat[J]. Optics Express, 25, 28146-28156(2017).

    [48] Zhang K, Wang Z W, Chen G D et al. GeTe photoresist films for both positive and negative heat-mode nanolithography[J]. Materials Letters, 261, 127019(2020).

    [49] Qin L, Huang Y Q, Xia F et al. 5 nm nanogap electrodes and arrays by Super-resolution laser lithography[J]. Nano Letters, 20, 4916-4923(2020).

    [50] Tong Q C, Nguyen D T T, Do M T et al. Direct laser writing of polymeric nanostructures via optically induced local thermal effect[J]. Applied Physics Letters, 108, 183104(2016).

    [51] Nguyen D T T, Tong Q C, Ledoux-Rak I et al. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect[J]. Journal of Applied Physics, 119, 013101(2016).

    [52] Liu C P, Huang Y X, Hsu C C et al. Nanoscale fabrication using thermal lithography technique with blue laser[J]. IEEE Transactions on Magnetics, 45, 2206-2208(2009).

    [53] Chen J K, Lin J W, Chen J P et al. Optimization of Ge—Sb—Sn—O films for thermal lithography of submicron structures[J]. Japanese Journal of Applied Physics, 51, 06(2012).

    [54] Zeng B J, Huang J Z, Ni R W et al. Metallic resist for phase-change lithography[J]. Scientific Reports, 4, 5300(2014).

    [55] Luo T, Li Z, He Q et al. Pr-based metallic glass films used as resist for phase-change lithography[J]. Optics Express, 24, 5754-5762(2016).

    [56] Usami Y, Watanabe T, Kanazawa Y et al. 405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material[J]. Applied Physics Express, 2, 126502(2009).

    [57] Deng C M, Geng Y Y, Wu Y Q. New calix[4]arene derivatives as maskless and development-free laser thermal lithography materials for fabricating micro/nano-patterns[J]. Journal of Materials Chemistry C, 1, 2470-2476(2013).

    [58] Zhang K, Chen Z M, Wei J S et al. A study on one-step laser nanopatterning onto copper-hydrazone-complex thin films and its mechanism[J]. Physical Chemistry Chemical Physics, 19, 13272-13280(2017).

    [59] Zhang K, Chen Z M, Geng Y Y et al. Nanoscale-resolved patterning on metal hydrazone complex thin films using diode-based maskless laser writing in the visible light regime[J]. Chinese Optics Letters, 14, 051401(2016).

    [60] Yang C T, Hsu M F, Chang S L et al. Spin coatable inorganic resist for high density disk mastering process application[J]. Japanese Journal of Applied Physics, 47, 6023(2008).

    [61] Zhang K, Wang Z W, Chen G D et al. Te-free SbBi thin film as a laser heat-mode photoresist[J]. Chinese Optics Letters, 17, 093102(2019).

    [62] Zhao P J, Zheng J L, Zhang K et al. Ge—Sb thin films patterned by heat-mode lithography[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 16, 2100545(2022).

    [63] Wei T, Wei J S, Wang Y et al. Manipulation and simulations of thermal field profiles in laser heat-mode lithography[J]. Journal of Applied Physics, 122, 223107(2017).

    [64] Li H, Wang R, Geng Y Y et al. Enhancement effect of patterning resolution induced by an aluminum thermal conduction layer with AgInSbTe as a laser thermal lithography film[J]. Chinese Physics Letters, 29, 074401(2012).

    [65] Wei J S, Wang Y, Wu Y Q. Manipulation of heat-diffusion channel in laser thermal lithography[J]. Optics Express, 22, 32470-32481(2014).

    [66] Zheng J L, Wei J S. Effect of focus locking performance of piezoelectric ceramics on exposure uniformity of lithography system[J]. Acta Optica Sinica, 42, 1914001(2022).

    [67] Meng Y, Behera J K, Wang Z W et al. Nanostructure patterning of C—Sb2Te3 by maskless thermal lithography using femtosecond laser pulses[J]. Applied Surface Science, 508, 145228(2020).

    [68] Wei T, Wei J S, Zhang K et al. Grayscale image recording on Ge2Sb2Te5 thin films through laser-induced structural evolution[J]. Scientific Reports, 7, 42712(2017).

    [69] Wei T, Liu B, Li W F et al. Direct laser printing color images based on the microstructure modulation of phase change material[J]. Optics & Laser Technology, 138, 106895(2021).

    Jialong Guo, Tao Wei, Jingsong Wei, Jing Hu, Miao Cheng, Qianqian Liu, Ruirui Wang, Wanfei Li, Bo Liu. Research Progress of High‐Resolution Direct Laser Writing Lithography Based on Phase Change Thin Film (Invited)[J]. Chinese Journal of Lasers, 2024, 51(12): 1202410
    Download Citation