• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101003 (2022)
Hongyu Luo and Jianfeng Li*
Author Affiliations
  • State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • show less
    DOI: 10.3788/CJL202249.0101003 Cite this Article Set citation alerts
    Hongyu Luo, Jianfeng Li. Progress on Mid-Infrared Mode-Locked Fluoride Fiber Lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101003 Copy Citation Text show less
    References

    [1] Amini-Nik S, Kraemer D, Cowan M L et al. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery[J]. PLoS One, 5, e13053(2010).

    [2] Bérubé J P, Frayssinous C, Lapointe J et al. Direct inscription of on-surface waveguides in polymers using a mid-IR fiber laser[J]. Optics Express, 27, 31013-31022(2019).

    [3] Popmintchev T, Chen M C, Popmintchev D et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 336, 1287-1291(2012).

    [4] Wolter B, Lemell C, Baudisch M et al. Formation of very-low-energy states crossing the ionization threshold of argon atoms in strong mid-infraredfields[J]. Physical Review A, 90, 063424(2014).

    [5] Blaga C I, Xu J L, DiChiara A D et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 483, 194-197(2012).

    [6] Loza-Alvarez P, Brown C T A, Reid D T et al. High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm[J]. Optics Letters, 24, 1523-1525(1999).

    [7] Zhao K, Zhong H Z, Yuan P et al. Generation of 120 GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier[J]. Optics Letters, 38, 2159-2161(2013).

    [8] Fuji T, Suzuki T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation inair[J]. Optics Letters, 32, 3330-3332(2007).

    [9] Tang Y X, Wright L G, Charan K et al. Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber[J]. Optica, 3, 948-951(2016).

    [10] Okhotnikov O G, Gomes L, Xiang N et al. Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range[J]. Optics Letters, 28, 1522-1524(2003).

    [11] Kafka J D, Baer T, Hall D W. Mode-locked erbium-doped fiber laser with soliton pulseshaping[J]. Optics Letters, 14, 1269-1271(1989).

    [12] Zhang M, Kelleher E J R, Torrisi F et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 20, 25077-25084(2012).

    [13] Pawliszewska M, Martynkien T, Przewłoka A et al. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber[J]. Optics Letters, 43, 38-41(2018).

    [14] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017).

    [15] Jia S J, Jia Z X, Yao C F et al. 2875 nm lasing from Ho3+ -doped fluoroindate glass fibers[J]. IEEE Photonics Technology Letters, 30, 323-326(2018).

    [16] Jia S J, Jia Z X, Yao C F et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 μm lasing[J]. Laser Physics, 28, 015802(2018).

    [17] He H Y, Jia Z X, Jia S J et al. Ho3+ /Pr3+ co-doped AlF3 based glass fibers for efficient ~2.9 μm lasers[J]. IEEE Photonics Technology Letters, 32, 1489-1492(2020).

    [18] Liu M, Zhang J Q, Xu N N et al. Room-temperature watt-level and tunable ~3 μm lasers in Ho3+/Pr3+ co-doped AlF3-based glass fiber[J]. Optics Letters, 46, 2417-2420(2021).

    [19] He H Y, Jia Z X, Wang T et al. Intense emission at ~3.3 μm from Er3+-doped fluoroindate glass fiber[J]. Optics Letters, 46, 1057-1060(2021).

    [20] Henderson-Sapir O, Malouf A, Bawden N et al. Recent advances in 3.5 μm erbium-doped mid-infrared fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 0900509(2017).

    [21] Maes F, Fortin V, Poulain S et al. Room-temperature fiber laser at 3.92 μm[J]. Optica, 5, 761-764(2018).

    [22] Majewski M R, Woodward R I, Carreé J Y et al. Emission beyond 4 μm and mid-infrared lasing in a dysprosium-doped indium fluoride (InF3) fiber[J]. Optics Letters, 43, 1926-1929(2018).

    [23] Wang C C, Luo H Y, Yang J et al. Watt-level ~3.5 μm Er3+-doped ZrF4 fiber laser using dual-wavelength pumping at 655 and 1981 nm[J]. IEEE Photonics Technology Letters, 33, 784-787(2021).

    [24] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [25] Majewski M R, Jackson S D. Highly efficient mid-infrared dysprosium fiberlaser[J]. Optics Letters, 41, 2173-2176(2016).

    [26] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [27] Tsang Y H, El-Taher A E, King T A et al. Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd∶YAG laser operating at 1.3 μm[J]. Optics Express, 14, 678-685(2006).

    [28] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser[J]. Applied Physics Letters, 83, 1316-1318(2003).

    [29] Amin M Z, Majewski M R, Woodward R I et al. Novel near-infrared pump wavelengths for dysprosium fiberlasers[J]. Journal of Lightwave Technology, 38, 5801-5808(2020).

    [30] Aydin Y O, Fortin V, Vallée R et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 43, 4542-4545(2018).

    [31] Tokita S, Hirokane M, Murakami M et al. Stable 10 W Er∶ZBLAN fiber laser operating at 2.712.88 μm[J]. Optics Letters, 35, 3943-3945(2010).

    [32] Maes F, Fortin V, Bernier M et al. 5.6 W monolithic fiber laser at 3.55 μm[J]. Optics Letters, 42, 2054-2057(2017).

    [33] Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiberlaser[J]. Optics Letters, 41, 1676-1679(2016).

    [34] Crawford S, Hudson D D, Jackson S D. High-power broadly tunable 3-μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 7, 1-9(2015).

    [35] Carbonnier C, Többen H, Unrau U B. Room temperature CW fibre laser at 3.22 μm[J]. Electronics Letters, 34, 893-894(1998).

    [36] Fortin V, Jobin F, Larose M et al. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm[J]. Optics Letters, 44, 491-494(2019).

    [37] Bernier M, Faucher D, Caron N et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 17, 16941-16946(2009).

    [38] Hu T, Hudson D D, Jackson S D. FM-mode-locked fiber laser operating at 2.9 μm[C], 1-2(2013).

    [39] Zhao L N, Wang J R, Huang S W. Nonlinear-mirror mode-locked Er3+∶ZBLAN fiber laser[C], ATu2A.27(2018).

    [40] Zhang X, Shu S L, Cai K D et al. Pulse control in self-mode-locked 2.8 μm Er-doped fluoride fiber lasers[J]. Optics & Laser Technology, 129, 106285(2020).

    [41] Keller U, Knox W H, Roskos H. Coupled-cavity resonant passive mode-locked Ti:sapphire laser[J]. Optics Letters, 15, 1377-1379(1990).

    [42] Frerichs C, Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm[J]. Optical Fiber Technology, 2, 358-366(1996).

    [43] Li J F, Hudson D D, Liu Y et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747-3749(2012).

    [44] Wei C, Zhu X S, Norwood R A et al. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 37, 3849-3851(2012).

    [45] Fedorov V V, Mirov S B, Gallian A et al. 3.775.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures[J]. IEEE Journal of Quantum Electronics, 42, 907-917(2006).

    [46] Wan P, Yang L M, Liu J. Towards high power and high energy femtosecond fiber lasers[J]. Proceedings of SPIE, 8961, 89610K(2014).

    [47] Hu T, Hudson D D, Jackson S D. Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class[J]. Optics Letters, 39, 2133-2136(2014).

    [48] Zhu X S, Wang F Q, Zhu G W et al. Graphene enabled 3 μm pulsed fiber lasers[C], STu1L.5(2014).

    [49] Haboucha A, Fortin V, Bernier M et al. Fiber Bragg grating stabilization of a passively mode-locked 2.8 μm Er3+: fluoride glass fiber laser[J]. Optics Letters, 39, 3294-3297(2014).

    [50] Yin K, Jiang T, Zheng X et al. Mid-infrared ultra-short mode-locked fiber laser utilizing topological insulator Bi2Te3 nano-sheets as the saturable absorber[EB/OL]. https:∥arxiv.org/abs/1505.06322

    [51] Tang P H, Qin Z P, Liu J et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 40, 4855-4858(2015).

    [52] Qin Z P, Xie G Q, Zhao C J et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 41, 56-59(2016).

    [53] Zhu G W, Zhu X S, Wang F Q et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 28, 7-10(2016).

    [54] Li J F, Luo H Y, Zhai B et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers[J]. Scientific Reports, 6, 30361(2016).

    [55] Zhu C H, Wang F Q, Meng Y F et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions[J]. Nature Communications, 8, 14111(2017).

    [56] Wei C, Shi H X, Luo H Y et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J]. Optics Express, 25, 19170-19178(2017).

    [57] Shen Y L, Wang Y S, Chen H W et al. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser[J]. Scientific Reports, 7, 14913(2017).

    [58] Qin Z P, Hai T, Xie G Q et al. Black phosphorus Q-switched and mode-locked mid-infrared Er∶ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 26, 8224-8231(2018).

    [59] Qin Z P, Xie G Q, Ma J G et al. 2.8 μm all-fiber Q-switched and mode-locked lasers with black phosphorus[J]. Photonics Research, 6, 1074-1078(2018).

    [60] Wei C, Lü Y J, Shi H X et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-6(2019).

    [61] Wei C, Lü Y J, Li Q R et al. Wideband tunable, carbon nanotube mode-locked fiber laser emitting at wavelengths around 3 μm[J]. IEEE Photonics Technology Letters, 31, 869-872(2019).

    [62] Paradis P, Duval S, Fortin V et al. Towards ultrafast all-fiber laser at 2.8 μm based on a SESAM and a fiber Bragg grating[C](2019).

    [63] Guo C Y, Wei J C, Yan P G et al. Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror[J]. Applied Physics Express, 13, 012013(2020).

    [64] Bharathan G, Jiang X T, Zhang H et al. Mode-locked mid-IR fibre laser based on 2D nanomaterials[J]. Proceedings of SPIE, 11200, 112002B(2019).

    [65] Luo H Y, Li S Q, Wu X D et al. Unlocking the ultrafast potential of gold nanowires for mode-locking in the mid-infrared region[J]. Optics Letters, 46, 1562-1565(2021).

    [66] Bharathan G, Xu L Y, Jiang X T et al. MXene and PtSe2 saturable absorbers for all-fibre ultrafast mid-infrared lasers[J]. Optical Materials Express, 11, 1898-1906(2021).

    [67] Luo H Y, Wang Y Z, Li J F et al. High-stability, linearly polarized mode-locking generation from a polarization-maintaining fiber oscillator around 2.8 μm[J]. Optics Letters, 46, 4550-4553(2021).

    [68] Fang Z Q, Zhang C X, Liu J et al. 3.46 μm Q-switched Er3+∶ZBLAN fiber laser based on a semiconductor saturable absorber mirror[J]. Optics & Laser Technology, 141, 107131(2021).

    [69] Duval S, Bernier M, Fortin V et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2, 623-626(2015).

    [70] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiberlaser[J]. Optics Letters, 40, 4226-4228(2015).

    [71] Duval S, Olivier M, Fortin V et al. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm[J]. Proceedings of SPIE, 9728, 972802(2016).

    [72] Antipov S, Hudson D D, Fuerbach A et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 3, 1373-1376(2016).

    [73] Woodward R I, Hudson D D, Fuerbach A et al. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser[J]. Optics Letters, 42, 4893-4896(2017).

    [74] Huang J P, Pang M, Jiang X et al. Pulse fragmentation and multi-soliton states in mid-infrared mode-locked fiber laser[C], AM6A.25(2018).

    [75] Wang Y, Jobin F, Duval S et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm[J]. Optics Letters, 44, 395-398(2019).

    [76] Huang J, Pang M, Jiang X et al. Route from single-pulse to multi-pulse states in a mid-infrared soliton fiberlaser[J]. Optics Express, 27, 26392-26404(2019).

    [77] Qin Z P, Xie G Q, Gu H A et al. Mode-locked 2.8 μm fluoride fiber laser: from soliton to breathing pulse[J]. Advances in Optics and Photonics, 1, 065001(2019).

    [78] Gu H A, Qin Z P, Xie G Q et al. Generation of 131 fs mode-locked pulses from 2.8 μm Er∶ZBLAN fiber laser[J]. Chinese Optics Letters, 18, 031402(2020).

    [79] Huang J, Pang M, Jiang X et al. Sub-two-cycle octave-spanning mid-infrared fiberlaser[J]. Optica, 7, 574-579(2020).

    [80] Luo H Y, Yang J, Li J F et al. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 2.8 μm[J]. Optics Letters, 46, 841-844(2021).

    [81] Bawden N, Henderson-Sapir O, Jackson S D et al. Ultrafast 3.5 μm fiber laser[J]. Optics Letters, 46, 1636-1639(2021).

    [82] Li J F, Luo H Y, Liu Y et al. Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 15-28(2013).

    [83] Aydın Y O, Fortin V, Maes F et al. Diode-pumped mid-infrared fiber laser with 50% slope efficiency[J]. Optica, 4, 235-238(2017).

    [84] Henneberger W C, Schulte H J. Optical pulses produced by laser length variation[J]. Journal of Applied Physics, 37, 2189(1966).

    [85] Porta J, Grudinin A B, Chen Z J et al. Environmentally stable picosecond ytterbium fiber laser with a broad tuningrange[J]. Optics Letters, 23, 615-617(1998).

    [86] Heidt A M, Burger J P, Maran J N et al. High power and high energy ultrashort pulse generation with a frequency shifted feedback fiber laser[J]. Optics Express, 15, 15892-15897(2007).

    [87] Sousa J M, Okhotnikov O G. Short pulse generation and control in Er-doped frequency-shifted-feedback fibre lasers[J]. Optics Communications, 183, 227-241(2000).

    [88] Vazquez-Zuniga L A, Jeong Y. Study of a mode-locked erbium-doped frequency-shifted-feedback fiber laser incorporating a broad bandpass filter: numerical results[J]. Optics Communications, 322, 54-60(2014).

    [89] Chen H, Chen S P, Jiang Z F et al. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers[J]. Scientific Reports, 6, 26431(2016).

    [90] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser:picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 3, 116106(2018).

    [91] Majewski M R, Woodward R I, Jackson S D. Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback[J]. Optics Letters, 44, 1698-1701(2019).

    [92] Pawliszewska M, Majewski M R, Jackson S D. Electronically tunable picosecond pulse generation from Ho3+-doped fluoride fiber laser using frequency-shifted feedback[J]. Optics Letters, 45, 5808-5811(2020).

    [93] Henderson-Sapir O, Bawden N, Majewski M R et al. Mode-locked and tunable fiber laser at the 3.5 μm band using frequency-shifted feedback[J]. Optics Letters, 45, 224-227(2019).

    [94] Majewski M R, Pawliszewska M, Jackson S D. Picosecond pulse formation in the presence of atmospheric absorption[J]. Optics Express, 29, 19159-19169(2021).

    [95] Sabert H, Brinkmeyer E. Pulse generation in fiber lasers with frequency shifted feedback[J]. Journal of Lightwave Technology, 12, 1360-1368(1994).

    Hongyu Luo, Jianfeng Li. Progress on Mid-Infrared Mode-Locked Fluoride Fiber Lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101003
    Download Citation