• Chinese Journal of Lasers
  • Vol. 49, Issue 1, 0101003 (2022)
Hongyu Luo and Jianfeng Li*
Author Affiliations
  • State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • show less
    DOI: 10.3788/CJL202249.0101003 Cite this Article Set citation alerts
    Hongyu Luo, Jianfeng Li. Progress on Mid-Infrared Mode-Locked Fluoride Fiber Lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101003 Copy Citation Text show less
    Er3+-, Ho3+-, and Dy3+-doped fluoride glasses.(a)Mid-infrared emission spectra[19-22];(b)corresponding energy level diagrams, transitions, and pump methods[19-29]
    Fig. 1. Er3+-, Ho3+-, and Dy3+-doped fluoride glasses.(a)Mid-infrared emission spectra[19-22];(b)corresponding energy level diagrams, transitions, and pump methods[19-29]
    Working mechanism of MSA effect
    Fig. 2. Working mechanism of MSA effect
    SESAM mode-locked Ho3+/Pr3+ codoped ZBLAN fiber laser[43].(a)Experimental setup;(b)time domain pulse sequence;(c)optical spectra in the CW and mode-locking regimes;(d)autocorrelation trace
    Fig. 3. SESAM mode-locked Ho3+/Pr3+ codoped ZBLAN fiber laser[43].(a)Experimental setup;(b)time domain pulse sequence;(c)optical spectra in the CW and mode-locking regimes;(d)autocorrelation trace
    Commercial semiconductor materials or components mode-locked mid-infrared fluoride fiber lasers.(a)Experimental setup of the InAs mode-locked Ho3+/Pr3+ co-doped ZBLAN fiber ring oscillator at 2.86 μm and the autocorrelation trace[47];(b)experimental setup of the SESAM mode-locked high-power Er3+-doped ZBLAN fiber laser at 2.78 μm and the output power evolution[51];(c)experimental setup of the SESAM mode-locked tunable Er3+-doped ZBLAN fiber laser around 2.8 μm and the optical spectra[57];(d)experimental setup of the SESAM mode-locked high-stability polarization-maintaining Er3+-doped ZBLAN fiber laser around 2.8 μm and the noise characteristics[67]
    Fig. 4. Commercial semiconductor materials or components mode-locked mid-infrared fluoride fiber lasers.(a)Experimental setup of the InAs mode-locked Ho3+/Pr3+ co-doped ZBLAN fiber ring oscillator at 2.86 μm and the autocorrelation trace[47];(b)experimental setup of the SESAM mode-locked high-power Er3+-doped ZBLAN fiber laser at 2.78 μm and the output power evolution[51];(c)experimental setup of the SESAM mode-locked tunable Er3+-doped ZBLAN fiber laser around 2.8 μm and the optical spectra[57];(d)experimental setup of the SESAM mode-locked high-stability polarization-maintaining Er3+-doped ZBLAN fiber laser around 2.8 μm and the noise characteristics[67]
    Device schematics and pulse trains of novel nanomaterials mode-locked ZBLAN fiber laser. (a) Black phosphorus mode-locked 2.77 μm all-fiber Er3+-doped [59];(b) black phosphorus mode-locked 3.49 μm dual-wavelength pumped Er3+-doped[58]; (c) gold nanowires mode-locked 2.86 μm Ho3+/Pr3+ co-doped[65]
    Fig. 5. Device schematics and pulse trains of novel nanomaterials mode-locked ZBLAN fiber laser. (a) Black phosphorus mode-locked 2.77 μm all-fiber Er3+-doped [59];(b) black phosphorus mode-locked 3.49 μm dual-wavelength pumped Er3+-doped[58]; (c) gold nanowires mode-locked 2.86 μm Ho3+/Pr3+ co-doped[65]
    Working mechanism of NPR effect
    Fig. 6. Working mechanism of NPR effect
    NPR mode-locked Er3+-doped ZBLAN fluoride fiber ring oscillator at 2.8 μm [69]. (a) Schematic of setup; (b)optical spectra;(c)time domain pulse sequence;(d)autocorrelation trace
    Fig. 7. NPR mode-locked Er3+-doped ZBLAN fluoride fiber ring oscillator at 2.8 μm [69]. (a) Schematic of setup; (b)optical spectra;(c)time domain pulse sequence;(d)autocorrelation trace
    Device schematic and correlated characteristic of NPR mode-locked mid-infrared fluoride fiber lasers. (a) NPR mode-locked 2.8 μm Er3+-doped ZBLAN fiber oscillator, amplifier, and compressor[79];(b)NPR mode-locked tunable Er3+-doped ZBLAN fiber oscillator[80];(c)NPR mode-locked dual-wavelength pumped Er3+-doped ZBLAN fiber oscillator[81]
    Fig. 8. Device schematic and correlated characteristic of NPR mode-locked mid-infrared fluoride fiber lasers. (a) NPR mode-locked 2.8 μm Er3+-doped ZBLAN fiber oscillator, amplifier, and compressor[79];(b)NPR mode-locked tunable Er3+-doped ZBLAN fiber oscillator[80];(c)NPR mode-locked dual-wavelength pumped Er3+-doped ZBLAN fiber oscillator[81]
    Comparison of SA and FSF mode-locking mechanisms[90]
    Fig. 9. Comparison of SA and FSF mode-locking mechanisms[90]
    FSF mode-locked Dy3+-doped ZBLAN fiber laser based on AOTF[90].(a)Experimental setup;(b)power evolution;(c) Q-switched and mode-locked optical spectra;(d)time domain pulse sequence;(e)autocorrelation trace;(f)tuned mode-locked spectra
    Fig. 10. FSF mode-locked Dy3+-doped ZBLAN fiber laser based on AOTF[90].(a)Experimental setup;(b)power evolution;(c) Q-switched and mode-locked optical spectra;(d)time domain pulse sequence;(e)autocorrelation trace;(f)tuned mode-locked spectra
    FSF mode-locked Dy3+-doped ZBLAN fiber laser based on AOM[94].(a)Experimental setup;(b)optical spectrum
    Fig. 11. FSF mode-locked Dy3+-doped ZBLAN fiber laser based on AOM[94].(a)Experimental setup;(b)optical spectrum
    DopantsHost materialλP/nmP /WλL/nmReference
    Er3+ZBLAN98041.202824[30]
    Er3+ZBLAN97511.002710-2880[31]
    Er3+ZBLAN976+19765.603552[32]
    Er3+ZBLAN980+19731.503330-3780[33]
    Ho3+/Pr3+ZBLAN11507.202825-2975[34]
    Ho3+ZBLAN5320.113220[35]
    Ho3+InF38880.203917-3924[21]
    Dy3+ZBLAN283010.103239[36]
    Dy3+ZBLAN17000.172807-3380[26]
    Table 1. Performance parameters of typical continuous wave(CW)mid-infrared Er3+, Ho3+, and Dy3+-doped fluoride fiber lasers
    DopantsSAλ /nmτ /psPave/mWPpeak/WE /nJTimeReference
    Ho3+/Pr3+SESAM2872.024132.02064.92012-09[43]
    Er3+Fe2+∶ZnSe2783.019 (estimated)51.4-0.932012-09[45]
    Er3+SESAM2784.05 (estimated)142.0--2014-03[46]
    Ho3+/Pr3+InAs2859.5669.2465-2014-04[47]
    Er3+Graphene-----2014-06[48]
    Er3+SESAM2797.060 (estimated)440.0--2014-06[49]
    Ho3+/Pr3+Bi2Te32830.0690.014008.62015-05[50]
    Er3+SESAM2780.0251050.01860-2015-11[51]
    Er3+Black phosphorus2783.042613.061025.52016-01[52]
    Er3+Graphene2784.54218.0170.72016-01[53]
    Ho3+Black phosphorus2866.78.687.8-6.282016-07[54]
    Ho3+/Pr3+Cd3As22860.06.3---2017-01[55]
    Ho3+/Pr3+SESAM2842.022127.7--2017-08[56]
    2876.0
    Er3+SESAM2710.06.4203.011007.022017-11[57]
    2820.0
    Er3+Black phosphorus3489.0-40.0--2018-04[58]
    Er3+Black phosphorus2771.1-6.2.0--2018-11[59]
    Ho3+/Pr3+Carbon nanotube2865.2-71.8--2019-02[60]
    Ho3+/Pr3+Carbon nanotube2836.05.3 (estimated)126.6--2019-06[61]
    2906.0
    Er3+SESAM2791.015150.0--2019-06[62]
    Er3+WSe22790.021360.0-8.42019-12[63]
    Er3+PtSe22796.0-223.0--2019-12[64]
    Ho3+/Pr3+Gold nanowires2865.01298.0--2021-04[65]
    Er3+Ti3C2Tx2796.011.4 (estimated)603.0--2021-06[66]
    Er3+SESAM2717.044446.0--2021-09[67]
    2827.0
    Table 2. Progress and performance parameters of MSA mode-locked mid-infrared fluoride fiber lasers
    Dopantsλ /nmτ /fsPave/mWPpeak/WE /nJTimeReference
    Er3+2805207443.500.802015-07[69]
    Er3+27934972056.403.622015-09[70]
    Er3+2800270-23.007.002016-03[71]
    Ho3+/Pr3+287618032737.007.602016-12[72]
    Ho3+/Pr3+28657020012.303.702017-12[73]
    Er3+2785805455.404.302018-11[74]
    Dy3+30508281753.112.922019-01[75]
    308310102044.214.83
    Er3+2785430124-5.302019-09[76]
    Er3+2791215-43.309.302019-12[77]
    Er3+278313131722.682.972020-03[78]
    Er3+-15.9-500.0011.002020-05[79]
    Er3+2752-28072391369.602.602021-02[80]
    Er3+35455802165.503.202021-04[81]
    Table 3. Progress and performance parameters of NPR mode-locked mid-infrared fluoride fiber lasers
    DopantsFrequency shifterλ /nmτ /psPave/mWPpeak/WE /nJTimeReference
    Dy3+AOTF2970-330033120-2.72018-11[90]
    Ho3+/Pr3+AOM28644.73001900102019-04[91]
    Er3+AOTF3397-361253208-1.382020-01[92]
    Ho3+/Pr3+AOTF2840-2940273151708.12020-10[93]
    Er3+AOTF/AOM2769/276931/20345--2021-06[94]
    Dy3+AOM30750.8 (estimated)---2021-06[94]
    Table 4. Progress and performance parameters of FSF mode-locked mid-infrared fluoride fiber lasers
    Hongyu Luo, Jianfeng Li. Progress on Mid-Infrared Mode-Locked Fluoride Fiber Lasers[J]. Chinese Journal of Lasers, 2022, 49(1): 0101003
    Download Citation