• Chinese Optics Letters
  • Vol. 19, Issue 10, 101301 (2021)
A. Garhwal1, A. E. Arumona2、3、4, P. Youplao2、3, K. Ray5, I. S. Amiri2、3, and P. Yupapin2、3、*
Author Affiliations
  • 1Amity School of Engineering & Technology, Amity University Rajasthan, Jaipur, India
  • 2Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • 3Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • 4Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • 5Amity School of Applied Sciences, Amity University Rajasthan, Jaipur, India
  • show less
    DOI: 10.3788/COL202119.101301 Cite this Article Set citation alerts
    A. Garhwal, A. E. Arumona, P. Youplao, K. Ray, I. S. Amiri, P. Yupapin. Human-like stereo sensors using plasmonic antenna embedded MZI with space–time modulation control [Invited][J]. Chinese Optics Letters, 2021, 19(10): 101301 Copy Citation Text show less
    References

    [1] P. Youplao, N. Pornsuwancharoen, I. S. Amiri, M. A. Jalil, M. S. Aziz, J. Ali, G. Singh, P. Yupapin, K. T. V. Grattan. Microring stereo sensor model using Kerr–Vernier effect for bio-cell sensor communication. Nano Commun. Networks, 17, 30(2018).

    [2] M. Bunruangses, P. Youplao, I. S. Amiri, N. Pornsuwancharoen, P. Yupapin. Double vision model using space-time function control within silicon microring system. Silicon, 12, 2635(2020).

    [3] I.-J. Ding, Z.-G. Wu. Two user adaption-derived features for biometrical classifications of user identity in 3D-sensor-based body gesture recognition applications. IEEE Sens. J., 19, 8432(2019).

    [4] N. Hendrich, F. Wasserfall, J. Zhang. 3D printed low-cost force-torque sensors. IEEE Access, 8, 140569(2020).

    [5] M. Schouten, G. Wolterink, A. Dijkshoorn, D. Kosmas, S. Stramigioli, G. Krijnen. A review of extrusion-based 3D printing for fabrication of electro- and biomechanical sensors. IEEE Sens. J., 20, 14218(2020).

    [6] M. R. Khosravani, T. Reinicke. “3D-printed sensors: current progress and future challenges. Sens. Actuat. A: Phys., 305, 111916(2020).

    [7] J. Qu, Q. Wu, T. Clancy, Q. Fan, X. Wang, X. Liu. 3D-printed strain-gauge micro force sensors. IEEE Sens. J., 20, 6971(2020).

    [8] Z. Zhu, H. S. Park, M. C. McAlpine. 3D printed deformable sensors. Appl. Sci. Eng., 6, 25(2020).

    [9] S. Tsuji, T. Kohama. A layered 3D touch screen using capacitance measurement. IEEE Sens. J., 14, 3040(2014).

    [10] P. P. Yupapin, N. Sarapat. Novel micro-scale sensors using WGMS within the modified add-drop filter circuits. Microwave Opt. Technol. Lett., 56, 14(2013).

    [11] A. Shafiee, M. Bahadoran, P. Yupapin. Analytical microring stereo system using coupled mode theory and application. Appl. Opt., 58, 8167(2019).

    [12] A. Garhwal, K. Ray, A. E. Arumona, G. K. Bharti, I. S. Amiri, P. Yupapin. Spin-wave generation using MZI embedded plasmonic antennas for quantum communications. Opt. Quantum Electron., 52, 241(2020).

    [13] A. Garhwal, A. E. Arumona, K. Ray, P. Youplao, S. Suwandee, P. Yuppain. Microplasma source circuit using microring space-time distortion control. IEEE Trans. Plasma Sci., 48, 3600(2020).

    [14] D. Yuan, Y. Dong, Y. Liu, T. Li. Mach–Zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section. Sensors, 15, 21500(2015).

    [15] T. J. Davis, D. E. Gomez, A. Roberts. Plasmonic circuits for manipulating optical information. Nanophotonics, 6, 543(2016).

    [16] V. Giannini, A. I. F. Dominguez, S. C. Heck, S. A. Maier. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev., 111, 3888(2011).

    [17] A. Habib, X. Zhu, S. Fong, A. A. Yanik. Active plasmonic nanoantenna: an emerging toolbox from photonics to neuroscience. Nanophotonics, 9, 3805(2020).

    [18] A. E. Arumona, I. S. Amiri, P. Yupapin. Plasmonic micro-antenna characteristics using gold grating embedded in a panda-ring circuit. Plasmonics, 15, 279(2020).

    [19] K. Uomwech, K. Sarapat, P. P. Yupapin. Dynamic modulated Gaussian pulse propagation within the double PANDA ring resonator system. Microwave Opt. Technol. Lett., 52, 1818(2010).

    [20] P. Yooplao, P. Pongwongtragull, S. Mitatha, P. P. Yupapin. Crosstalk effects of quantum key distribution via a quantum router. Microwave Opt. Technol. Lett., 53, 1094(2011).

    [21] A. E. Arumona, A. Garhwal, P. Youplao, I. S. Amiri, K. Ray, S. Punthawanunt, P. Yupapin. Hall effect sensors using polarized electron cloud spin orientation control. Microsc. Res. Tech., 84, 563(2020).

    [22] A. Garhwal, M. Bunruangses, A. E. Arumona, P. Youplao, K. Ray, S. Suwandee, P. Yupapin. Integrating metamaterial antenna node and LiFi for privacy preserving intelligent COVID-19 hospital patient management. Cognit. Comput.(2021).

    [23] A. E. Arumona, I. S. Amiri, S. Punthawanunt, K. Ray, G. Singh, G. K. Bharti, P. Yupapin. 3D-quantum interferometer using silicon microring-embedded gold grating circuit. Microsc. Res. Tech., 83, 1217(2020).

    [24] A. E. Arumona, A. Garhwal, M. Bunruangses, K. Ray, P. Youplao, S. Punthawanunt, P. Yupapin. Plasmonic antenna embedded chalcogenide MZI circuit for ultra-high density up-and down link transmission. Plasmonics, 16, 947(2021).

    [25] A. E. Arumona, I. S. Amiri, G. Singh, P. Yupapin. Full-time slot teleportation using unified space-time function control. Microwave Opt. Technol. Lett., 62, 2183(2020).

    [26] S. Suwandee, A. E. Arumona, K. Ray, P. Youplao, P. Yupapin. Mindfulness model using polariton oscillation in plasmonic circuit for human performance management. Axioms, 9, 76(2020).

    [27] A. E. Arumona, A. Garhal, S. Punthawanunt, K. Ray, P. Youplao, P. Yupapin. Micro-metamaterial antenna characteristics using microring embedded silver bars. Microsyst. Technol., 26, 3927(2020).

    [28] L. E. Valenti, C. E. Giacomelli. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions. J. Nanopart. Res., 19, 156(2017).

    [29] C. A. Balanis. Antenna Theory Analysis and Design(2005).

    [30] M. Bunruangses, P. Youplao, I. S. Amiri, N. Pornsuwancharoen, P. Yupapin. Brain sensor and communication model using plasmonic microring antenna model. Opt. Quantum Electron., 51, 349(2019).

    [31] B. Admas, F. Petruccione. Quantum effects in the brain: a review. AVS Quantum Sci., 2, 022901(2020).

    [32] C. Grau, R. Ginhoux, A. Riera, T. L. Nguyen, H. Chauvat, M. Berg, J. L. Amengual, A. P. Leone, G. Ruffini. Conscious brain-to-brain communication in humans using non-invasive technologies. PLoS ONE, 9, 8(2014).

    Data from CrossRef

    [1] A. Garhwal, A. E. Arumona, K. Ray, P. Youplao, S. Punthawanunt, P. Yupapin. MUX/DEMUX circuit using plasmonic antennas for LiFi and WiFi uplink and downlink transmission. Photonic Network Communications(2022).

    A. Garhwal, A. E. Arumona, P. Youplao, K. Ray, I. S. Amiri, P. Yupapin. Human-like stereo sensors using plasmonic antenna embedded MZI with space–time modulation control [Invited][J]. Chinese Optics Letters, 2021, 19(10): 101301
    Download Citation