• Advanced Photonics
  • Vol. 2, Issue 5, 056003 (2020)
Vitali Kozlov1、*, Sergei Kosulnikov1, Dmytro Vovchuk1、2, and Pavel Ginzburg1
Author Affiliations
  • 1Tel Aviv University, School of Electrical Engineering, Tel Aviv, Israel
  • 2Yuriy Fedkovych Chernivtsi National University, Department of Radio Engineering and Information Security, Chernivtsi, Ukraine
  • show less
    DOI: 10.1117/1.AP.2.5.056003 Cite this Article Set citation alerts
    Vitali Kozlov, Sergei Kosulnikov, Dmytro Vovchuk, Pavel Ginzburg. Memory effects in scattering from accelerating bodies[J]. Advanced Photonics, 2020, 2(5): 056003 Copy Citation Text show less
    References

    [1] B. N. Mandal, S. De. Water Wave Scattering(2015).

    [2] D. Belkic. Principles of Quantum Scattering Theory(2004).

    [3] J. D. Jackson. Classical Electrodynamics(1999).

    [4] A. Starobinskiĭ, S. Churilov. Amplification of electromagnetic and gravitational waves scattered by a rotating ‘black hole’. Sov. J. Exp. Theor. Phys., 38, 1-5(1974).

    [5] C. Fryer, S. Woosley. A new twist on neutron stars. Nature, 411, 31-33(2001).

    [6] C. S. Reynolds. Observing black holes spin. Nat. Astron., 3, 41-47(2019).

    [7] G. F. Roach. An Introduction to Echo Analysis(2008).

    [8] P. Hariharan. Basics of Intereferometry(2007).

    [9] M. I. Skolnik. Radar Handbook(2008).

    [10] J. G. Van Bladel. Electromagnetic Fields(2007).

    [11] J. G. Van Bladel. Relativity and Engineering(1984).

    [12] D. De Zutter. Scattering by a rotating dielectric sphere. IEEE Trans. Antennas Propag., 28, 643-651(1980).

    [13] A. N. Tripathi. Linear Systems Analysis(1998).

    [14] H. D’Angelo. Linear Time-Varying Systems: Analysis and Synthesis(1970).

    [15] J. Benesty, J. Chen, E. A. P. Habets. Speech Enhancement in the STFT Domain(2012).

    [16] V. C. Chen et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study. IEEE Trans. Aerosp. Electron. Syst., 42, 2-21(2006).

    [17] N. Levanon, E. Mozeson. Radar Signals(2004).

    [18] R. Komissarov et al. Partially coherent radar unties range resolution from bandwidth limitations. Nat. Commun., 10, 1423(2019).

    [19] V. C. Chen, D. Tahmoush, W. J. Miceli. Radar Micro-Doppler Signatures: Processing and Applications(2014).

    [20] V. Kozlov et al. Coupled micro-Doppler signatures of closely located targets. Phys. Rev. B, 100, 214308(2019).

    [21] D. Filonov, B. Z. Steinberg, P. Ginzburg. Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling. Phys. Rev. B, 95, 235139(2017).

    [22] G. Greving, W. Biermann, R. Mundt. Numerical system analysis of rotating antennas and rotating scatterers applied to navigation and radar systems. Int. Conf. Electromagn. Adv. Appl., 416-419(2012).

    [23] S. Tretyakov. Analytical Modeling in Applied Electromagnetics, 288(2003).

    [24] F. P. G. De Arquer et al. Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect. IEEE Trans. Antennas Propag., 59, 3144-3153(2011).

    [25] C. A. Balanis. Antenna Theory: Analysis and Design(2005).

    [26] S. Lannebère, M. G. Silveirinha. Wave instabilities and unidirectional light flow in a cavity with rotating walls. Phys. Rev. A, 94, 033810(2016).

    [27] R. D. Isaak. Underwater communication. J. Acoust. Soc. Am., 28, 556-557(1956).

    [28] M. A. Persinger. ELF and VLF Electromagnetic Field Effects(1974).

    [29] L. Chu. Physical limitations of omnidirectional antennas. J. Appl. Phys., 19, 1163(1948).

    [30] H. A. Wheeler. Fundamental limitations of small antennas. Proc. IRE, 35, 1479-1484(1947).

    [31] V. Kozlov et al. Asymmetric backscattering from the hybrid magneto-electric meta particle. Appl. Phys. Lett., 109, 203503(2016).

    [32] D. Filonov et al. Resonant metasurface with tunable asymmetric reflection. Appl. Phys. Lett., 113, 094103(2018).

    [33] L. Novotny, H. Bert. Principles of Nano-Optics(2006).

    [34] V. Kozlov et al. Micro-Doppler frequency comb generation by rotating wire scatterers. J. Quant. Spectrosc. Radiat. Transf., 190, 7-12(2017).

    [35] A. K. Singh, Y.-H. Kim. Automatic measurement of blade length and rotation rate of drone using W-band. IEEE Sens. J., 18, 1895-1902(2018).

    [36] J. Michael, Z. Lu, V. C. Chen. Experimental study on radar micro-Doppler signatures of unmanned aerial vehicles. IEEE Radar Conf., 854-857(2017).

    [37] J. Park et al. Extraction of jet engine modulation component weakly present in measured signals for enhanced radar target recognition. J. Electromagn. Waves Appl., 28, 963-975(2014).

    [38] D. Belgiovane, C. Chen. Micro-Doppler characteristics of pedestrians and bicycles for automotive radar sensors at 77 GHz. 11th Eur. Conf. Antennas and Propag., 2912-2916(2017).

    [39] W. Stutzman, G. Thiele. Antenna Theory and Design(2013).

    [40] O. Korech et al. Observing molecular spinning via the rotational Doppler effect. Nat. Photonics, 7, 711-714(2013).

    [41] Y. Arita, M. Mazilu, K. Dholakia. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun., 4, 2374(2013).

    [42] L. Paterson et al. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [43] P. Ginzburg et al. Self-induced torque in hyperbolic metamaterials. Phys. Rev. Lett., 111, 036804(2013).

    [44] A. La Porta, M. D. Wang. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett., 92, 9-12(2004).

    [45] D. Kislov et al. Diffusion-inspired time-varying phosphorescent decay in a nanostructured environment. Phys. Rev. B, 101, 035420(2020).

    [46] A. S. Kadochkin et al. Quantum sensing of motion in colloids via time-dependent Purcell effect. Laser Photonics Rev., 12, 1800042(2018).

    [47] H. Lim et al. High resolution range profile-jet engine modulation analysis of aircraft models. J. Electromagn. Waves Appl., 25, 1092-1102(2011).

    [48] A. Stefanov, S. Member. Helicopter rotor-blade modulation of antenna radiation characteristics. IEEE Trans. Antennas Propag., 49, 688-696(2001).

    [49] J. Pétri. Radiation from an off-centred rotating dipole in vacuum. Mon. Not. R. Astron. Soc., 463, 1240-1268(2016).

    [50] Y. Mao et al. An exact frequency-domain solution of the sound radiated from the rotating dipole point source. J. Acoust. Soc. Am., 132, 1294-1302(2012).

    [51] R. G. Newburgh, G. V. Borgiotti. Backscattered spectra from rotating and vibrating short wires and their relation to the identification problem(1975).

    [52] J. L. Wong, I. S. Reed. A model for the radar echo from a random collection of rotating dipole scatterers. IEEE Trans. Aerosp. Electron. Syst., 3, 171-178(1967).

    Vitali Kozlov, Sergei Kosulnikov, Dmytro Vovchuk, Pavel Ginzburg. Memory effects in scattering from accelerating bodies[J]. Advanced Photonics, 2020, 2(5): 056003
    Download Citation