• Chinese Journal of Lasers
  • Vol. 50, Issue 22, 2219001 (2023)
Zhihua Feng1、4, Shuo Yuan2, Yishu Chen2, Haipeng Liu2, Qunyu Bi3, Fuling Zhang4、*, and Jijun Feng2、**
Author Affiliations
  • 1School of Physics, Xidian University, Xi an 710071, Shaanxi, China
  • 2Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
  • 4The 27th Research Institute, China Electronics Technology Group Corporation, Zhengzhou 450047, Henan, China
  • show less
    DOI: 10.3788/CJL230484 Cite this Article Set citation alerts
    Zhihua Feng, Shuo Yuan, Yishu Chen, Haipeng Liu, Qunyu Bi, Fuling Zhang, Jijun Feng. Compact High Uniformity Silicon Waveguide Arrayed Waveguide Grating[J]. Chinese Journal of Lasers, 2023, 50(22): 2219001 Copy Citation Text show less
    References

    [1] Wang L L, Zhang J S, An J M et al. Compact and low loss coarse wavelength division demultiplexer chip[J]. Acta Optica Sinica, 41, 0923001(2021).

    [2] Marom D M, Blau M. Switching solutions for WDM-SDM optical networks[J]. IEEE Communications Magazine, 53, 60-68(2015).

    [3] Ismail N, Sun F, Sengo G et al. Improved arrayed-waveguide-grating layout avoiding systematic phase errors[J]. Optics Express, 19, 8781-8794(2011).

    [4] Obaid H M, Shahid H. Performance evaluation of hybrid optical amplifiers for a 100×10 Gbps DWDM system with ultrasmall channel spacing[J]. Optik, 200, 163404(2020).

    [5] Blau M, Marom D M. Spatial aperture-sampled mode multiplexer extended to higher mode count fibers[J]. Journal of Lightwave Technology, 33, 4805-4814(2015).

    [6] Chen Y H, Tang W J. Reconfigurable asymmetric optical burst switching for concurrent DWDM multimode switching: architecture and research directions[J]. IEEE Communications Magazine, 48, 57-65(2010).

    [7] Stanton E J, Spott A, Davenport M L et al. Low-loss arrayed waveguide grating at 760  nm[J]. Optics Letters, 41, 1785-1788(2016).

    [8] Fotiadis K, Pitris S, Moralis-Pegios M et al. Silicon photonic 16×16 cyclic AWGR for DWDM O-band interconnects[J]. IEEE Photonics Technology Letters, 32, 1233-1236(2020).

    [9] Yuan R. Arrayed waveguide grating component and its applications[J]. Optical Communication Technology, 34, 1-5(2010).

    [10] Kamei S, Ishii M, Itoh M et al. 64×64-channel uniform-loss and cyclic-frequency arrayed-waveguide grating router module[J]. Electronics Letters, 39, 83(2003).

    [11] Zhang J S, An J M, Sun B L et al. Fabrication of silica based silicon 20 channel cyclic arrayed waveguide grating[J]. Acta Photonica Sinica, 51, 0623003(2022).

    [12] Ran N, Chen X Y, Wang Z K et al. Optimization and experiments of on-chip silicon nitride grating couplers[J]. Acta Optica Sinica, 43, 0113002(2023).

    [13] Smit M K. New focusing and dispersive planar component based on an optical phased array[J]. Electronics Letters, 24, 385(1988).

    [14] Doerr C R, Zhang L M, Winzer P J. Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating[J]. Journal of Lightwave Technology, 29, 536-541(2011).

    [15] Takada K, Yamada H, Inoue Y. Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexers[J]. Journal of Lightwave Technology, 14, 1677-1689(1996).

    [16] Lu S, Yang C X, Yan Y B et al. Design and fabrication of a polymeric flat focal field arrayed waveguide grating[J]. Optics Express, 13, 9982-9994(2005).

    [17] Li C Y, An J M, Wang J Q et al. The 8×10 GHz receiver optical subassembly based on silica hybrid integration technology for data center interconnection[J]. Chinese Physics Letters, 34, 104202(2017).

    [18] Min Y H, Lee M H, Ju J J et al. Polymeric 16×16 arrayed-waveguide grating router using fluorinated polyethers operating around 1550 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 806-811(2001).

    [19] Wang J, Sheng Z, Li L et al. Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology[J]. Optics Express, 22, 9395-9403(2014).

    [20] Park J, Joo J, Kwack M J et al. Three-dimensional wavelength-division multiplexing interconnects based on a low-loss SixNy arrayed waveguide grating[J]. Optics Express, 29, 35261-35270(2021).

    [21] Zou J, Jiang X X, Xia X et al. Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator[J]. Journal of Lightwave Technology, 31, 1935-1940(2013).

    [22] Liu D J, Zhao W K, Zhang L et al. High performance passive silicon optical waveguide devices: development and challenges[J]. Acta Optica Sinica, 42, 1713001(2022).

    [23] Sun D X, Zhang D L, Bi F et al. Application of silicon-based microring resonant cavity in integrated optical gyroscope sensitive unit[J]. Laser & Optoelectronics Progress, 59, 1313001(2022).

    [24] Liu H P, Feng J J, Ge J M et al. Tilted nano-grating based ultra-compact broadband polarizing beam splitter for silicon photonics[J]. Nanomaterials, 11, 2645(2021).

    [25] Nishi H, Tsuchizawa T, Kou R et al. Monolithic integration of a silica AWG and Ge photodiodes on Si photonic platform for one-chip WDM receiver[J]. Optics Express, 20, 9312-9321(2012).

    [26] Yuan S, Feng J J, Yu Z H et al. Silicon nanowire-assisted high uniform arrayed waveguide grating[J]. Nanomaterials, 13, 182(2022).

    [27] Pathak S, Vanslembrouck M, Dumon P et al. Optimized silicon AWG with flattened spectral response using an MMI aperture[J]. Journal of Lightwave Technology, 31, 87-93(2013).

    [28] Li H Q, Gao W T, Li E B et al. Investigation of ultrasmall 1×N AWG for SOI-based AWG demodulation integration microsystem[J]. IEEE Photonics Journal, 7, 7802707(2015).

    [29] Marz R, Cremer C. On the theory of planar spectrographs[J]. Journal of Lightwave Technology, 10, 2017-2022(1992).

    [30] Smit M K, Van Dam C. PHASAR-based WDM-devices: principles, design and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 236-250(1996).

    [31] Zou J, Ma X, Xia X et al. High resolution and ultra-compact on-chip spectrometer using bidirectional edge-input arrayed waveguide grating[J]. Journal of Lightwave Technology, 38, 4447-4453(2020).

    [32] Song G Y, Wang S X, Zou J et al. Silicon-based cyclic arrayed waveguide grating routers with improved loss uniformity[J]. Optics Communications, 427, 628-634(2018).

    [33] Lu H C, Wang W S. Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response[J]. IEEE Photonics Technology Letters, 20, 3-5(2008).

    [34] Liu X T, Feng J J, Wu X Y et al. Silicon waveguide based integrated optical phased array chips (invited)[J]. Acta Photonica Sinica, 49, 1149012(2020).

    Zhihua Feng, Shuo Yuan, Yishu Chen, Haipeng Liu, Qunyu Bi, Fuling Zhang, Jijun Feng. Compact High Uniformity Silicon Waveguide Arrayed Waveguide Grating[J]. Chinese Journal of Lasers, 2023, 50(22): 2219001
    Download Citation