• Chinese Optics Letters
  • Vol. 22, Issue 2, 022502 (2024)
Yao Liu1, Lei Liu1, Ruifeng Zhang1, Weiye Yang1, and Yingkai Liu2、3、*
Author Affiliations
  • 1Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
  • 2Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming 650500, China
  • 3Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
  • show less
    DOI: 10.3788/COL202422.022502 Cite this Article Set citation alerts
    Yao Liu, Lei Liu, Ruifeng Zhang, Weiye Yang, Yingkai Liu. High-response formamidine bromide lead hybrid cadmium sulfide photodetector[J]. Chinese Optics Letters, 2024, 22(2): 022502 Copy Citation Text show less
    References

    [1] F. Hao, C. C. Stoumpos, D. H. Cao et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics, 8, 489(2014).

    [2] K. M. Boopathi, R. Mohan, T.-Y. Huang et al. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem C, 4, 1591(2016).

    [3] W. Shangguan, C. X. Yan, J. M. Cai. Quasi-planar tetracoordiante carbon networks with tunable electronic properties combined with ultra-high carrier mobility and optical absorption coefficient: two-dimensional Be2C. Appl. Surf. Sci., 604, 154644(2022).

    [4] H. S. Kim, C. R. Lee, J. H. Im et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2, 591(2012).

    [5] Q. F. Dong, Y. J. Fang, Y. C. Shao et al. Electron-hole diffusion lengths < 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967(2015).

    [6] S. A. Veldhuis, P. P. Boix, N. Yantara et al. Perovskite materials for light-emitting diodes and lasers. Adv. Mater., 28, 6804(2016).

    [7] X. Liu, L. L. Gu, Q. P. Zhang et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun., 5, 4007(2014).

    [8] S. X. Li, H. Xia, X. C. Sun et al. Curved photodetectors based on perovskite microwire arrays via in situ conformal nanoimprinting. Adv. Funct. Mater., 32, 2202277(2022).

    [9] D. P. Mcmeekin, G. Sadoughi, W. Rehman et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 351, 151(2016).

    [10] Z. G. Xiao, R. A. Kerner, L. F. Zhao et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics, 11, 108(2017).

    [11] Q. Shan, J. Li, J. Song et al. All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. J. Mater. Chem. C, 5, 4565(2017).

    [12] L. Meng, E. P. Yao, Z. R. Hong et al. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater., 29, 1603826(2017).

    [13] S. G. Li, S. C. Tong, J. L. Yang et al. High-performance formamidinium-based perovskite photodetectors fabricated via doctor-blading deposition in ambient condition. Org. Electron., 47, 102(2017).

    [14] D. J. Yu, F. Cao, Y. J. Gao et al. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 displays. Adv. Funct. Mater., 28, 1800248(2018).

    [15] A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett., 1, 32(2016).

    [16] T. Y. Wei, C. T. Huang, B. J. Hansen et al. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Appl. Phys. Lett., 96, 013508(2010).

    [17] Y. Ye, L. Dai, X. N. Wen et al. High-performance single CdS nanobelt metal-semiconductor field-effect transistor-based photodetectors. ACS Appl. Mater. Interf., 2, 2724(2010).

    [18] J. S. Jie, W. J. Zhang, Y. Jiang et al. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett., 6, 1887(2006).

    [19] W. K. Bae, L. A. Padilha, Y. S. Park et al. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano, 7, 3411(2013).

    [20] L. D. Li, Z. Lou, H. R. Chen et al. Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors. Sci. China-Mater., 62, 1139(2019).

    [21] B. H. Liu, M. K. Li, W. Fu et al. High-performance self-driven ultraviolet photodetector based on SnO2 p-n homojunction. Opt. Mater., 129, 112571(2022).

    [22] J. Q. Huang, Q. H. Tan, Z. J. Zhang et al. Photoconductive properties of Er-CdSe nanobelt detectors. J. Mater. Sci., 54, 560(2019).

    [23] Y. Ye, L. Dai, X. N. Wen et al. High-performance single CdS nanobelt metal-semiconductor field-effect transistor-based photodetectors. ACS Appl. Mater. Interfaces, 2, 2724(2010).

    [24] V. K. Sharma, R. Mukhopadhyay, A. Mohanty et al. Contrasting behaviors of FA and MA cations in APbBr3. J. Phys. Chem. Lett., 11, 9669(2020).

    [25] Y. H. Kim, C. Wolf, Y. T. Kim et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano, 11, 6586(2017).

    [26] J. Zhang, X. K. Yang, H. Deng et al. Low-dimensional halide perovskites and their advanced optoelectronic applications. Nano-Micro Lett., 9, 26(2017).

    [27] W. Zheng, F. Huang, R. S. Zheng et al. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater., 27, 3921(2015).

    [28] Z. P. Lian, Q. F. Yan, Q. R. Lv et al. High-performance planar-type photodetector on (100) facet of MAPbI3 single crystal. Sci. Rep., 5, 16563(2015).

    [29] B. Nafradi. Comment on ‘Superior photodetectors based on all-inorganic perovskite CsPbl3 nanorods with ultrafast response and high stability. ACS Nano, 12, 10570(2018).

    [30] D. J. Yu, F. Cao, Y. L. Shen et al. Dimensionality and interface engineering of 2D homologous perovskites for boosted charge-carrier transport and photodetection performances. J. Phys. Chem. Lett., 8, 2565(2017).

    [31] F. Y. Zhang, B. Yang, K. B. Zheng et al. Formamidinium lead bromide (FAPbBr3) perovskite microcrystals for sensitive and fast photodetectors. Nano-Micro Lett., 10, 8(2018).

    [32] R. Pan, H. Y. Li, J. Wang et al. High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid. Part. Part. Syst. Charact., 35, 1700304(2018).

    [33] H. Zhou, Z. Song, C. Wang et al. Double coating for the enhancement of the performance in a MA0.7FA0.3PbBr3 photodetector. ACS Photonics, 5, 2100(2018).

    [34] D. J. Yu, F. Cao, Y. Gu et al. Broadband and sensitive two-dimensional halide perovskite photodetector for full-spectrum underwater optical communication. Nano Res., 14, 1210(2021).

    [35] M. M. Furchi, D. K. Polyushkin, A. Pospischil et al. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett., 14, 6165(2014).

    [36] L. Y. Cao, P. Y. Fan, A. P. Vasudev et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett., 10, 439(2010).

    Yao Liu, Lei Liu, Ruifeng Zhang, Weiye Yang, Yingkai Liu. High-response formamidine bromide lead hybrid cadmium sulfide photodetector[J]. Chinese Optics Letters, 2024, 22(2): 022502
    Download Citation