• Opto-Electronic Engineering
  • Vol. 44, Issue 1, 69 (2017)
Xiaoyong Tian*, Lixian Yin, and Dichen Li
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.01.006.1 Cite this Article
    Xiaoyong Tian, Lixian Yin, Dichen Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69 Copy Citation Text show less
    References

    [1] Cui Tiejun, Smith D R, Liu Ruopeng. Metamaterials: theory, design and applications[M]. New York: Springer, 2010.

    [2] Cui Wanzhao, Ma Wei, Qiu Lede, et al. Electromagnetic metamaterials and its applications[M]. Beijing: National Defense Industry Press, 2008.

    [3] Zhang Mingxi. Introduction to metamaterials[M]. Beijing: National Defense Industry Press, 2014.

    [4] Tang Wenxuan, Mei Zhonglei, Cui Tiejun. Theory, experiment and applications of metamaterials[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12): 127001.

    [5] Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials[J]. Microelectronic En-gineering, 2016, 163: 7-20.

    [6] Veselago V G. The electrodynamics of substances with simul-taneously negative values of - and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

    [7] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    [8] Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 036609.

    [9] Kafesaki M, Tsiapa I, Katsarakis N, et al. Left-handed met-amaterials: the fishnet structure and its variations[J]. Physical Review B, 2007, 75(23): 235114.

    [10] Zhou Jiangfeng, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622.

    [11] Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1968-1973.

    [12] Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 036609.

    [13] Ma Huifeng, Cai Bengeng, Zhang Tengxiang, et al. Three- dimensional gradient-index materials and their applications in microwave lens antennas[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2561-2569.

    [14] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9): 523-530.

    [15] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77- 79.

    [16] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

    [17] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index me-ta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431.

    [18] Schurig D, Mock J J, Justice B J, et al. Metamaterial electro-magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    [19] Ma Huifeng, Cui Tiejun. Three-dimensional broadband ground- plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21.

    [20] Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1: 124.

    [21] Mei Zhonglei, Bai Jing, Cui Tiejun. Gradient index metamate-rials realized by drilling hole arrays[J]. Journal of Physics D: Applied Physics, 2010, 43(5): 055404.

    [22] Driscoll T, Lipworth G, Hunt J, et al. Performance of a three dimensional transformation-optical-flattened Lüneburg lens[J]. Optics Express, 2012, 20(12): 13262-13273.

    [23] Xu Xiaofei, Feng Yijun, Xiong Shuai, et al. Broad band invisi-bility cloak made of normal dielectric multilayer[J]. Applied Physics Letters, 2011, 99(15): 154104.

    [24] Peng Liang, Ran Lixin, Chen Hongsheng, et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators[J]. Applied Physics Letters, 2007, 98(15): 157403.

    [25] Zhao Qian, Kang Lei, Du B, et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Applied Physics Letters, 2008, 101(2): 027402.

    [26] Lee J H, Blair J, Tamma V A, et al. Direct visualization of optical frequency invisibility cloak based on silicon nanorod array[J]. Optics Express, 2009, 17(15): 12922-12928.

    [27] Blair J, Brown D, Tamma V A, et al. Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(6): 1222-1230.

    [28] Zhang Shuang, Zhou Jiangfeng, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules [J]. Nature Communications, 2012, 3: 942.

    [29] Zhu Weiming, Liu Aiqun, Zhang Xuming, et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials, 2011, 23(15): 1792-1796.

    [30] Tian Xiaoyong, Yin Ming, Li Dichen. 3D printing: a useful tool for the fabrication of artificial electromagnetic (EM) medium[J]. Rapid Prototyping Journal, 2016, 22(2): 251-257.

    [31] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339.

    [32] Zhou Fan, Bao Yongjun, Cao Wei, et al. Hiding a realistic object using a broadband terahertz invisibility cloak[J]. Scientific Re-ports, 2011, 1: 78.

    [33] Yin Ming, Tian Xiaoyong, Han Haoxue, et al. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime[J]. Applied Physics Letters, 2012, 100(12): 124101.

    [34] Li Dichen, He Jiankang, Tian Xiaoyong, et al. Additive manu-facturing: integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135.

    [35] Yin Ming, Tian Xiaoyong, Wu Lingling, et al. A broadband and omnidirectional electromagnetic wave concentrator with gra-dient woodpile structure[J]. Optics Express, 2013, 21(16): 19082.

    [36] Ye Dexin, Lu Ling, Joannopoulos J D, et al. Invisible metallic mesh[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10): 2568-2572.

    [37] Urzhumov Y, Landy N, Driscoll T, et al. Thin low-loss dielectric coatings for free-space cloaking[J]. Optics Letters, 2013, 38(10): 1606-1608.

    [38] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

    [39] Cai Wenshan, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227.

    [40] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901.

    [41] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

    [42] Leonhardt U. Notes on conformal invisibility devices[J]. New Journal of Physics, 2006, 8(7): 118.

    [43] Luneburg R K. Mathematical theory of optics[M]. Berkeley, California: University of California Press, 1964.

    [44] Danner A J, Tyc T, Leonhardt U. Controlling birefringence in dielectrics[J]. Nature Photonics, 2011, 5(6): 357-359.

    [45] Ma Yungui, Ong C K, Tyc T, et al. An omnidirectional retrore-flector based on the transmutation of dielectric singularities[J]. Nature Materials, 2009, 8(8): 639-642.

    [46] Yin Ming, Tian Xiaoyong, Wu Lingling, et al. All-dielectric three-dimensional broadband Eaton lens with large refractive index range[J]. Applied Physics Letters, 2014, 104(9): 094101.

    [47] Wu Lingling, Tian Xiaoyong, Yin Ming, et al. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band[J]. Applied Physics Letters, 2013, 103(8): 084102.

    [48] Wang Bingnan, Koschny T, Soukoulis C M. Wide-angle and polarization-independent chiral metamaterial absorber[J]. Physical Review B, 2009, 80(3): 033108.

    [49] Ding Fei, Cui Yanxia, Ge Xiaochen, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506.

    [50] Hawkes A M, Katko A R, Cummer S A. A microwave metamate-rial with integrated power harvesting functionality[J]. Applied Physics Letters, 2013, 103(16): 163901.

    [51] Cheng Qiang, Cui Tiejun, Jiang Weixiang, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006.

    [52] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106.

    [53] Shin D, Urzhumov Y, Jung Y, et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nature Communications, 2012, 3: 1213.

    [54] Shin D, Urzhumov Y, Lim D, et al. A versatile smart transfor-mation optics device with auxetic elasto-electromagnetic met-amaterials[J]. Scientific Reports, 2014, 4: 4084.

    [55] Kan T, Isozaki A, Kanda N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communication, 2015, 6: 8422.

    [56] Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314.

    [57] Yoo Y J, Ju S, Park S Y, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 2015, 5: 14018.

    Xiaoyong Tian, Lixian Yin, Dichen Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69
    Download Citation