• Opto-Electronic Engineering
  • Vol. 51, Issue 1, 230292-1 (2024)
Zhiyong Tao1, Yan He1、*, Sen Lin2, Tingjun Yi1, and Yaosheng Zhang1
Author Affiliations
  • 1School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • 2School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
  • show less
    DOI: 10.12086/oee.2024.230292 Cite this Article
    Zhiyong Tao, Yan He, Sen Lin, Tingjun Yi, Yaosheng Zhang. Surface defect detection of solar cells using local and global feature fusion[J]. Opto-Electronic Engineering, 2024, 51(1): 230292-1 Copy Citation Text show less
    References

    [1] X Yu, J S Yan, Z P Wu et al. Research progress of solar desalination materials produced by laser micro-nano fabrication. Opto-Electron Eng, 49, 210313(2022).

    [2] Á H Herraiz, A P Marugán, F P G Márquez. Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renew Energy, 153, 334-348(2020).

    [3] D Y Zeng, Z X Liang, Z Z Wu. Optimal mean linear classifier via weighted nuclear norm and L2, 1 norm. J Electron Inf Technol, 44, 1602-1609(2022).

    [4] R O S Juan, J Kim. Photovoltaic cell defect detection model based-on extracted electroluminescence images using SVM classifier, 578-582(2020). . https://doi.org/10.1109/ICAIIC48513.2020.9065065

    [5] C Wang, X Y Jiang, X H Liu. Defect detection in crystalline silicon solar cells based on electroluminescence imaging. J Optoelectron·Laser, 22, 1332-1336(2011).

    [6] K Firuzi, M Vakilian, B T Phung et al. Partial discharges pattern recognition of transformer defect model by LBP & HOG features. IEEE Trans Power Delivery, 34, 542-550(2019).

    [7] R O S Juan, J Kim. Photovoltaic cell defect detection model based-on extracted electroluminescence images using SVM classifier, 578-582(2020). https://doi.org/10.1109/ICAIIC48513.2020.9065065

    [8] Y Li, Y J Li, J C Liu et al. Research on segmentation of steel surface defect images based on improved Res-UNet network. J Electron Inf Technol, 44, 1513-1520(2022).

    [9] K Masita, A Hasan, T Shongwe. 75MW AC PV module field anomaly detection using drone-based IR orthogonal images with Res-CNN3 detector. IEEE Access, 10, 83711-83722(2022).

    [10] K M He, X Y Zhang, S Q Ren et al. Deep residual learning for image recognition, 770-778(2016). https://doi.org/10.1109/CVPR.2016.90

    [11] B L Du, Y G He, Y Z He et al. Intelligent classification of silicon photovoltaic cell defects based on eddy current thermography and convolution neural network. IEEE Trans Industr Inform, 16, 6242-6251(2020).

    [12] H Y Chen, Y Pang, Q D Hu et al. Solar cell surface defect inspection based on multispectral convolutional neural network. J Intell Manuf, 31, 453-468(2020).

    [13] B Y Su, H Y Chen, Z Zhou. BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection. IEEE Trans Ind Electron, 69, 3161-3171(2022).

    [14] H Y Chen, P Zhao, H W Yan. Crack detection based on multi-scale Faster RCNN with attention. Opto-Electron Eng, 48, 200112(2021).

    [15] M Zhang, L J Yin. Solar cell surface defect detection based on improved YOLO v5. IEEE Access, 10, 80804-80815(2022).

    [16] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [17] A Howard, M Sandler, B Chen et al. Searching for MobileNetV3, 1314-1324(2019). https://doi.org/10.1109/ICCV.2019.00140

    [18] X Y Zhang, X Y Zhou, M X Lin et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 6848-6856(2018). https://doi.org/10.1109/CVPR.2018.00716

    [19] B Koonce, B Koonce. EfficientNet. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, 109-123(2021). https://doi.org/10.1007/978-1-4842-6168-2_10

    [20] K Han, Y H Wang, Q Tian et al. GhostNet: more features from cheap operations, 1577-1586(2020). https://doi.org/10.1109/CVPR42600.2020.00165

    [21] I Radosavovic, R P Kosaraju, R Girshick et al. Designing network design spaces, 10425-10433(2020). https://doi.org/10.1109/CVPR42600.2020.01044

    [22] K Han, A Xiao, E H Wu et al. Transformer in transformer, 15908-15919(2021).

    [23] H P Wu, B Xiao, N Codella et al. CvT: introducing convolutions to vision transformers, 22-31(2021). https://doi.org/10.1109/ICCV48922.2021.00009

    [24] S d’Ascoli, H Touvron, M L Leavitt et al. ConViT: improving vision transformers with soft convolutional inductive biases. J Stat Mech Theory Exp, 2022, 114005(2022).

    [25] S Mehta, M Rastegari. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer(2022).

    [26] C Y Wang, A Bochkovskiy, H Y M Liao. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023). https://doi.org/10.1109/CVPR52729.2023.00721

    [27] N Pawar, A Waghmare, A Pratap, S Kumar, S Hiranwal, S D Purohit et al. Miniscule object detection in aerial images using YOLOR: a review. Proceedings of International Conference on Communication and Computational Technologies: ICCCT 2022, 697-708(2023). https://doi.org/10.1007/978-981-19-3951-8_52

    [28] Saydirasulovich S Norkobil, A Abdusalomov, M K Jamil et al. A YOLOv6-based improved fire detection approach for smart city environments. Sensors, 23, 3161(2023).

    [29] F M Talaat, H Zaineldin. An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput Appl, 35, 20939-20954(2023).

    [30] Y C Zhang, W B Zhang, J Y Yu et al. Complete and accurate holly fruits counting using YOLOX object detection. Comput Electron Agric, 198, 107062(2022).

    [31] G Huang, Z Liu, Der Maaten L Van et al. Densely connected convolutional networks, 2261-2269(2017). https://doi.org/10.1109/CVPR.2017.243

    [32] T Y Lin, P Dollár, R Girshick et al. Feature pyramid networks for object detection, 936-944(2017). https://doi.org/10.1109/CVPR.2017.106

    [33] S Liu, L Qi, H F Qin et al. Path aggregation network for instance segmentation, 8759-8768(2018). https://doi.org/10.1109/CVPR.2018.00913

    [34] Q B Hou, D Q Zhou, J S Feng. Coordinate attention for efficient mobile network design, 13708-13717(2021). https://doi.org/10.1109/CVPR46437.2021.01350

    [35] J Hu, L Shen, G Sun. Squeeze-and-excitation networks, 7132-7141(2018). https://doi.org/10.1109/CVPR.2018.00745

    [36] S Woo, J Park, J Y Lee et al. CBAM: convolutional block attention module, 3-19(2018). https://doi.org/10.1007/978-3-030-01234-2_1

    [37] D L Ouyang, S He, G Z Zhang et al. Efficient multi-scale attention module with cross-spatial learning, 1-5(2023). https://doi.org/10.1109/ICASSP49357.2023.10096516

    [38] C Szegedy, V Vanhoucke, S Ioffe et al. Rethinking the inception architecture for computer vision, 2818-2826(2016). https://doi.org/10.1109/CVPR.2016.308

    [39] C C Wu, Y C Hung. A study on electroluminescent phenomenon for solar cells test, 172-175(2018). https://doi.org/10.1109/ICKII.2018.8569147

    Zhiyong Tao, Yan He, Sen Lin, Tingjun Yi, Yaosheng Zhang. Surface defect detection of solar cells using local and global feature fusion[J]. Opto-Electronic Engineering, 2024, 51(1): 230292-1
    Download Citation