• Laser & Optoelectronics Progress
  • Vol. 51, Issue 9, 90005 (2014)
Li Weifan1、*, Guo Baoshan1, and Shi Wei1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop51.090005 Cite this Article Set citation alerts
    Li Weifan, Guo Baoshan, Shi Wei. Progress of Terahertz Parametric Oscillator[J]. Laser & Optoelectronics Progress, 2014, 51(9): 90005 Copy Citation Text show less
    References

    [1] Wang Ruijun, Wang Hongqiang, Zhuang Zhaowen, et al.. Research progress of terahertz radar technology[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040001.

    [2] Li Qi, Ding Shenghui, Li Yunda, et al.. Advances in research on THz digital holographic imaging[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050006.

    [3] Lu Shuhua. Detection of explosives by terahertz spectroscopic techniques[J]. Laser & Optoelectronics Progress, 2012, 49(4): 040006.

    [4] Li Xinlei, Li Biao. Review on progress of real-time THz sensing and imaging technology[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090008.

    [5] Sun Bo, Yao Jianquan. Generation of terahertz wave based on optical methods[J]. Chinese J Lasers, 2006, 33(10): 1349-1359.

    [6] Kawase K, Shikata J, Imai K, et al.. Transform-limited, narrow-linewidth, terahertz-wave parametric generator[J]. Appl Phys Lett, 2001, 78(19): 2819-2821.

    [7] Ma Chengju, Chen Yanwei, Xiang Jun, et al.. Progress in generation of terahertz radiation[J]. Laser & Optoelectronics Progress, 2007, 44(4): 56-61.

    [8] Vodopyanov K L, Hurlbut W C, Kozlov V G. Photonic THz generation in GaAs via resonantly enhanced intracavity multispectral mixing[J]. Appl Phys Lett, 2011, 99(4): 041104.

    [9] Shi W, Ding Y J. Continuously tunable and coherent terahertz radiation by means of phase-matched differencefrequency generation in zinc germanium phosphide[J]. Appl Phys Lett, 2003, 83(5): 848-850.

    [10] Ding Y J, Shi W. Widely-tunable, monochromatic, and high-power terahertz sources and their applications[J]. J Nonlinear Optical Physics & Materials, 2003, 12(04): 557-585.

    [11] Kawase K, Hatanaka T, Takahashi H, et al.. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Opt Lett, 2000, 25(23): 1714-1716.

    [12] Bahoura M, Herman G S, Barnes N P, et al.. Terahertz wave source via difference-frequency mixing using cross-Reststrahlen band dispersion compensation phase matching: a material study[C]. SPIE, 2000, 3928: 132-140.

    [13] Ding Y J, Zotova I B. Coherent and tunable terahertz oscillators, generators, and amplifiers[J]. J Nonlinear Optical Physics & Materials, 2002, 11(1): 75-97.

    [14] Hayashi S, Nawata K, Sakai H, et al.. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser[J]. Opt Express, 2011, 20(3): 2881-2886.

    [15] Yarborough J M, Sussman S S, Purhoff H E, et al.. Efficient, tunable optical emission from LiNbO3 without a resonator [J]. Appl Phys Lett, 1969, 15(3): 102-105.

    [16] Johnson B C, Puthoff H E, Soohoo S, et al.. Power and linewidth of tunable stimulated far-infrared emission in LiNbO3 [J]. Appl Phys Lett, 1971, 18(5): 181-183.

    [17] Piestrup M A, Fleming R N, Pantell R H. Continuously tunable submillimeter wave source[J]. Appl Phys Lett, 1975, 26(8): 418-421.

    [18] Kawase K, Sato M, Taniuchi T, et al.. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler[J]. Appl Phys Lett, 1996, 68(18): 2483-2485.

    [19] Ashkin A, Boyd G D, Dziedzic J M, et al.. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Appl Phys Lett, 1966, 9(1): 72-74.

    [20] Zhong Jiguo, Jin Jian, Wu Zhongkang. Measurement on photorefractive effect of MgO:LiNbO3[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 1980, (1): 59.

    [21] Jin Chan, Li Minghua, Liu Jinsong, et al.. Study on mechanism of MgO:LiNbO3 resistance to light damage[J]. Acta Photonica Sinica, 1994, 23(6): 530-534.

    [22] Armstrong J A, Bloembergen N, Ducuing J, et al.. Interactions between light waves in a nonlinear dielectric[J]. Phys Rev, 1962, 127(6): 1918-1939.

    [23] Molter D, Theuer M, Beigang R. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate[J]. Opt Express, 2009, 17(8): 6623-6628.

    [24] Shikata J, Sato M, Taniuchi T, et al.. Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling[J]. Opt Lett, 1999, 24(4): 202-204.

    [25] Li Zhongyang, Yao Jianquan, Xu Degang, et al.. Experimental investigation of high-power tunable THz-wave parametric oscillator based upon MgO:LiNbO3 crystal[J]. Chinese J Lasers, 2011, 38(4): 0411002.

    [26] Liu Lei, Li Xiao, Liu Tong, et al.. Progress of terahertz wave parametric oscillator[J]. Laser & Optoelectronics Progress, 2012, 49(9): 090001.

    [27] Kawase K, Shikata J, Ito H. Terahertz wave parametric source[J]. J Phys D: Appl Phys, 2002, 35(3): R1-R14.

    [28] Kawase K, Sato M, Nakamura K, et al.. Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition[J]. Appl Phys Lett, 1997, 71(6): 753-755.

    [29] Kawase K, Shikata J, Minamide H, et al.. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator[J]. Appl Opt, 2001, 40(9): 1423-1426.

    [30] Ikari T, Zhang X, Minamide H, et al.. THz-wave parametric oscillator with a surface-emitted configuration[J]. Opt Express, 2006, 14(4): 1604-1610.

    [31] Avetisyan Y, Sasaki Y, Ito H. Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide[J]. Appl Phys B, 2001, 73(5-6): 511-514.

    [32] Li Zhongyang, Yao Jianquan, Xu Degang, et al.. Output enhancement of a THz wave based on a surface-emitted THzwave parametric oscillator[J]. Chin Phys Lett, 2011, 28(11): 114201.

    [33] Li Zhongyang, Yao Jianquan, Lü Da, et al.. High-power terahertz radiation based on a compact eudipleural THz-wave parametric oscillator[J]. Chin Phys Lett, 2011, 28(6): 064209.

    [34] Zhang Xianbin, Shi Wei. Optimize the output performance by shortening the cavity length of the THz electromagnetic wave parametric oscillator[J]. Acta Physica Sinica, 2006, 55(10): 5237-5241.

    [35] Wang Weitao, Zhang Xingyu, Wang Qingpu, et al.. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO3 crystal[J]. Opt Lett, 2014, 39(4): 754-757.

    [36] Walsh D, Stothard D J M, Edwards T J, et al.. Injection-seeded intracavity terahertz optical parametric oscillator[J]. J Opt Soc Am B, 2009, 26(6): 1196-1202.

    [37] Edwards T, Walsh D, Spurr M, et al.. Compact source of continuously and widely-tunable terahertz radiation[J]. Opt Express, 2006, 14(4): 1582-1589.

    [38] Yao J Q, Wang Y Y, Xu D G, et al.. High-energy, continuously tunable intracavity terahertz-wave parametric oscillator [C]. 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009. 1-2.

    [39] Li Z Y, Li J, Bing P, et al.. Design and threshold analysis for a novel intracavity THz-wave parametric oscillator[J]. Infrared and Laser Engineering, 2012, 41(9): 2339-2345.

    [40] Molter D, Theuer M, Beigang R. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate[J]. Opt Express, 2009, 17(8): 6623-6628.

    [41] Takida Y, Maeda S, Ohira T, et al.. Noncascading THz-wave parametric oscillator synchronously pumped by modelocked picosecond Ti:sapphire laser in doubly-resonant external cavity[J]. Opt Commun, 2011, 284(19): 4663-4666.

    [42] Takida Y, Ohira T, Tadokoro Y, et al.. Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity[J]. IEEE J Quant Electron, 2013, 19(1): 8500307.

    [43] Sun B, Liu J, Li E. Investigation of a novel frequency-tuning method for terahertz-wave parametric oscillators[J]. Opt Express, 2008, 16(25): 20817-20825.

    [44] Brosnan S J, Byer R L. Optical parametric oscillator threshold and linewidth studies[J]. IEEE J Quant Electron, 1979, 15(6): 415-431.

    [45] Li Zhongyang, Yao Jianquan, Zhu Zhengnian, et al.. Threshold analysis of a THz-wave parametric oscillator[J]. Chin Phys Lett, 2010, 27(6): 064202.

    [46] Xu Degang, Zhang Hao, Jiang Hao, et al.. High energy terahertz parametric oscillator based on surface-emitted configuration[J]. Chin Phys Lett, 2013, 30(2): 024212.

    [47] Sun Bo, Liu Jinsong, Li Enbang, et al.. Investigation of pump-wavelength dependence of terahertz-wave parametric oscillator based on LiNbO3[J]. Chinese Phys B, 2009, 18(7): 2846-2852.

    [48] Shikata J, Kawase K, Karino K, et al.. Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals[J]. IEEE Trans on Microwave Theory and Techniques, 2000, 48(4): 653-661.

    [49] Imai K, Kawase K, Shikata J, et al.. Injection-seeded terahertz-wave parametric oscillator[J]. Appl Phys Lett, 2001, 78(8): 1026-1028.

    [50] Guo Shaofeng, Lin Wenxiong, Li Quan, et al.. Single axial and transverse mode electro-optic Q-switched laser based on injection-seeding technique and self filtering unstable resonator[J]. Chinese J Lasers, 2007, 33(12): 1585-1589.

    [51] Walsh D, Stothard D J M, Edwards T J, et al.. Injection-seeded intracavity terahertz optical parametric oscillator[J]. J Opt Soc Am B, 2009, 26(6): 1196-1202.

    [52] Imai K, Sugawara S, Shikata J, et al.. The effect of injection seeding on terahertz parametric oscillation[J]. Electronics and Communications in Japan (Part II: Electronics), 2003, 86(1): 26-35.

    CLP Journals

    [1] Zhang Lijuan, Zhao Liming. Enhancement of the Coupled Third Harmonic Conversion Efficiency in Non-Periodic Optical Superlattice[J]. Laser & Optoelectronics Progress, 2016, 53(9): 91901

    [2] Han Kai. Measurement of Gain Distribution in All-Fiber Optical Parametric Oscillator[J]. Chinese Journal of Lasers, 2016, 43(7): 701007

    [3] WANG Zecheng, YANG Zhongming, ZHANG Xingyu, FAN Shuzhen, CHEN Xiaohan, CONG Zhenhua, LIU Zhaojun, QIN Zengguang, MING Na, GUO Quanxin, GUO Liyuan. Research progress of terahertz parametric sources[J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 141

    Li Weifan, Guo Baoshan, Shi Wei. Progress of Terahertz Parametric Oscillator[J]. Laser & Optoelectronics Progress, 2014, 51(9): 90005
    Download Citation