• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 5, 513 (2018)
LIN Tsung-Tse*, WANG Ke, WANG Li, and HIRAYAMA Hideki
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.05.001 Cite this Article
    LIN Tsung-Tse, WANG Ke, WANG Li, HIRAYAMA Hideki. High output power THz quantum cascade lasers and their temperature dependent performance[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 513 Copy Citation Text show less
    References

    [1] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser [J]. Science, 1994, 264:553-556.

    [2] Khler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser [J]. Nature, 2002, 417:156-159.

    [3] Walther C, Fischer M, Scalari G, et al. Quantum cascade lasers operating from 1.2 to 1.6THz [J]. Appl. Phys. Lett., 2007, 91:131122-1-131122-3.

    [4] Chan C W I, Hu Q, Reno J L, Ground state terahertz quantum cascade lasers [J]. Appl. Phys. Lett. 2012, 101:151108-1-151108-4.

    [5] Fathololoumi S, Dupont E, Chan C W I, et al. Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling [J]. Opt. Express, 2012, 20:3866-3876.

    [6] Albo A, Hu Q. Carrier leakage into the continuum in diagonal GaAs/Al0.15GaAs terahertz quantum cascade lasers [J]. Appl. Phys. Lett., 2015, 107:241101-1-241101-5.

    [7] Kumar S, Chan C W I, Hu Q, et al. Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation [J]. Appl. Phys. Lett., 2009, 95:141110-1-141110-3.

    [8] Williams B S, Kumar S, Hu Q, et al. High-power terahertz quantum-cascade lasers [J]. Electron. Lett., 2006, 42:89-90.

    [9] Lee A W M, Qin Q, Kumar S, et al. High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal–metal waveguides [J]. Opt. Lett., 2007, 32:2840-2842.

    [10] Mendis R, Nagai M, Wang Y, et al. Terahertz Artificial Dielectric Lens [J]. Sci. Rep., 2016, 6:1-8.

    [11] Zhu H, Wang F, Yan Q, et al. Terahertz master-oscillator power-amplifier quantum cascade lasers [J]. Appl. Phys. Lett., 2016, 109:231105-1-231105-5.

    [12] Ohtani K, Turcinkova D, Bonzon C, et al. High performance 4.7 THz GaAs quantum cascade lasers based on four quantum wells [J]. New. J. Phys., 2016, 18:123004.

    [13] Li L, Chen L, Zhu J, et al. Terahertz quantum cascade lasers with > 1 W output powers [J]. Eectron. Lett. 2014, 50:309-311.

    [14] Hamadou A, Thobel J-L, Lamari S. Dynamic modeling of optically pumped electrically driven terahertz quantum cascade lasers [J]. Infrared phys. technol., 2017, 81:195-200.

    [15] Li L, Zhou X H, Lin T, et al. Electronic transport in a long wavelength infrared quantum cascade detector under dark condition [J]. Infrared phys. technol., 2016, 78:72-75.

    [16] Saha S, Kumar J. Complete rate equation modelling of quantum cascade lasers for the analysis of temperature effects [J]. Infrared phys. technol. 2016, 79:85-90.

    [17] Maineult W, Gellie P, Andronico A, et al. Metal-metal terahertz quantum cascade laser with micro-transverseelectromagnetic-electromagnetic-horn antenna [J]. Appl. Phys. Lett. 2008, 93:183508-1-183508-3.

    [18] Orlova E E, Hovenier J N, Klaassen T O, et al. Antenna Model for Wire Lasers [J]. Phys. Rev. Lett., 2006, 96:173904.

    [19] Yasuda H, Kubis T, Vogl P, et al. Nonequilibrium Green’s function calculation for four-level scheme terahertz quantum cascade lasers [J]. Appl. Phys. Lett. 2009, 94:151109-1-151109-3.

    [20] Schmielau T, Pereira Jr M F. Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers [J]. Appl. Phys. Lett., 2009, 95:231111-1-231111-3.

    [21] Wacker A, Lindskog M, Winge D O. Nonequilibrium Green’s Function Model for Simulation of Quantum Cascade Laser Devices Under Operating Conditions [J]. IEEE J. Sel. Top. Quant. Electron, 2013, 19:1200611.

    [22] Jirauschek C, Kubis T, Modeling techniques for quantum cascade lasers [J]. Appl. Phys. Rev., 2014, 1:011307-1-011307-51.

    [23] Grange T, Contrasting influence of charged impurities on transport and gain in terahertz quantum cascade lasers [J]. Phys. Rev. B, 2015, 92:241306.

    [24] Winge D O, Franckie M, Verdozzi C, et al. Simple electron-electron scattering in non-equilibrium Green's function simulations [J]. J. Phys. Conf. Series, 2016, 696:012013.

    [25] Nextnano Gmbh, http://www.nextnano.de/

    [26] Lin T-T, Ohtani K, Ohno H. Thermally Activated Longitudinal Optical Phonon Scattering of a 3.8 THz GaAs Quantum Cascade Laser [J]. Appl. Phys. Express, 2009, 2:022102-1-022102-3.

    [27] Matyas A, Chashmahcharagh R, Kovacs I, et al. Improved terahertz quantum cascade laser with variable height barriers [J]. J. Appl. Phys. 2012, 111:103106-1-103106-6.

    [28] Lin T-T, Hirayama H. Variable Barrier Height AlGaAs/GaAs Quantum Cascade Laser Operating at 3.7 THz [J]. Phys. Status Solidi A, 2018, 215:1700424.

    [29] Lin T-T, Ying L, Hirayama H. Threshold Current Density Reduction by Utilizing High-Al-Composition Barriers in 3.7 THz GaAs/AlxGa1-xAs Quantum Cascade Lasers [J]. Appl. Phys. Express, 2011, 5:012101-1-012101-3.

    [30] Luo H, Laframboise S R, Wasilewski Z R, et al. Terahertz quantum-cascade lasers based on a three-well active module [J]. Appl. Phys. Lett. 2007, 90:041112-1-041112-3.

    [31] Kumar S, Hu Q, Reno J R, 186 K operation of terahertz quantum-cascade lasers based on a diagonal design [J]. Appl. Phys. Lett. 2009, 94:131105-1-131105-3.

    [32] Lin T-T, Hirayama H. Improvement of operation temperature in GaAs/AlGaAs THz‐QCLs by utilizing high Al composition barrier [J]. Phys. Status Solidi C, 2013, 10:1430-1433.

    LIN Tsung-Tse, WANG Ke, WANG Li, HIRAYAMA Hideki. High output power THz quantum cascade lasers and their temperature dependent performance[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 513
    Download Citation