• Laser & Optoelectronics Progress
  • Vol. 53, Issue 4, 41402 (2016)
Peng Yu1、2、*, Liu Pengfei3, and Li Wei4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/lop53.041402 Cite this Article Set citation alerts
    Peng Yu, Liu Pengfei, Li Wei. Bad-Cavity Raman Laser Based on Lattice-Trapped Cesium Atoms[J]. Laser & Optoelectronics Progress, 2016, 53(4): 41402 Copy Citation Text show less
    References

    [1] Chou C W, Hume D B, Koelemeij J C J, et al.. Frequency comparison of two high-accuracy Al+ optical clocks[J]. Phys RevLett, 2010, 104: 070802.

    [2] Tamm C, Weyers S, Lipphardt B, et al.. Stray-field-induced quadrupole shift and absolute frequency of the 688 THz 171Yb+single-ion optical frequency standard[J]. Phys Rev A, 2009, 80: 043403.

    [3] Birnbaum K M, Boca A, Miller R, et al.. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 2005, 436: 87-90.

    [4] Marshall W, Simon C, Penrose R, et al.. Towards quantum superpositions of a mirror[J]. Phys Rev Lett, 2003, 91: 130401.

    [5] Müller H, Herrmann S, Braxmaier C, et al.. Modern Michelson-Morley experiment using cryogenic optical resonators[J].Phys Rev Lett, 2003, 91: 020401.

    [6] Jiang Y Y, Ludlow A D, Lemke N D, et al.. Making optical atomic clocks more stable with 10-16 level laser stabilization[J].Nature Photon, 2011, 5: 158-161.

    [7] Young B C, Cruz F C, Itano W M, et al.. Visible lasers with subhertz linewidths[J]. Phys Rev Lett, 1999, 82: 3799-3802.

    [8] Meiser D, Ye J, Carlson D R, et al.. Prospects for a millihertz-linewidth laser[J]. Phys Rev Lett, 2009, 102: 163601.

    [9] Chen J B. Active optical clock[J]. Chin Sci Bull, 2009, 54(3): 348-352.

    [10] Wang Y Q. Optical clocks based on stimulated emission radiation[J]. Chin Sci Bull, 2009, 54(3): 347.

    [11] Yu D S, Chen J B. Laser theory with finite atom-field time[J]. Phys Rev A, 2008, 78: 013846.

    [12] Bassani F, Forney J J, Quattropani A. Choice of gauge in two-photon transitions: 1s-2s transition in atomic hydrogen[J].Phys Rev Lett, 1977, 39(17): 1070-1073.

    [13] Hemmerich A, H nsch T W. Two-dimensional atomic crystal bound by light[J]. Phys Rev Lett, 1993, 70: 410-413.

    [14] Dicke R H. Coherence in spontaneous radiation processes[J]. Phys Rev, 1954, 93(1): 99-110.

    [15] Haake F, Kolobov M I, Fabre C, et al.. Superradiant laser[J]. Phys Rev Lett, 1993, 71(7): 995-998.

    [16] Bohnet J G, Chen Z L, Weiner J M, et al.. A steady-state superradiant laser with less than one intracavity photon[J]. Nature,2012, 484: 78-81.

    [17] Wang Y F, Chen J B. Superradiant laser with ultra-narrow linewidth based on 40Ca[J]. Chin Phys Lett, 2012, 29(7): 073202.

    [18] Meiser D, Holland M J. Steady-state superradiance with alkaline-earth-metal atoms[J]. Phys Rev A, 2010, 81: 033847.

    [19] Chen J B, Chen X Z. Optical lattice laser[C]. Proceedings of 2005 IEEE International Frequency Control Symposium, 2005:608-610.

    [20] Zang X, Zhang T, Chen J. Magic wavelengths for a lattice trapped rubidium four-level active optical clock[J]. Chin Phys Lett,2012, 29: 090601.

    [21] Zhang T, Wang Y, Zang X, et al.. Active optical clock based on four-level quantum system[J]. Chin Sci Bull, 2013, 58: 2033-2038.

    [22] Zhang S N, Wang Y F, Wang D Y, et al.. A scheme of potassium atom four level active optical clock[J]. Chin Phys Lett, 2013,30: 040601.

    [23] Kazakov G A, Schumm T. Active optical frequency standard using sequential coupling of atomic ensembles[J]. Phys RevA, 2013, 87: 013821.

    [24] Chalupczak W, Szymaniec K, Henderson D. Cooling in an optical lattice for a caesium fountain frequency standard[J]. IEEETrans Instrum Meas, 2005, 54(2): 837-841.

    [25] Dion C M, Sjolund P, Petra S J H, et al.. Time dependence of laser cooling in optical lattices[J]. Europhys Lett, 2005, 72(3):369-375.

    [26] Shen Yanlong, Chen Hongwei, Huang Ke, et al.. Watt-level 100-nm tunable mid-infrared Er∶ZBLAN fiber laser[J]. Chinese J Lasers, 2015, 42(10): 1002008.

    [27] Wu Yongzhong, Zhu Jianqiang, Li Yangshuai. Design of non-imaging pump cavity of laser rod amplifier[J]. Chinese J Lasers,2015, 42(10): 1002007.

    [28] Jin Dongchen, Sun Ruoyu, Wei Shouyu, et al.. 1570 nm nanosecond pulse generation from Er/Yb co-doped all-fiber dualcavitylaser with fiber-based passive Q-switched[J]. Chinese J Lasers, 2015, 42(10): 1002006.

    CLP Journals

    [1] Peng Yu, Shi Qingping, Huo Hu, Li Wei. Realization of Narrow Linewidth Property Based on Ultra-Stable Cavity in Precision Optics Teaching[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81402

    [2] Chen Jiupeng, Gao Jing, Jiao Dongdong, Bai Weikai, Deng Xue, Liu Jie, Xu Guanjun, Dong Ruifang, Liu Tao, Zhang Shougang. Laser Linewidth Measurement Based on System Parameters Insensitive Recirculating Delayed Self-Heterodyne Interferometer[J]. Acta Optica Sinica, 2016, 36(11): 1114001

    Peng Yu, Liu Pengfei, Li Wei. Bad-Cavity Raman Laser Based on Lattice-Trapped Cesium Atoms[J]. Laser & Optoelectronics Progress, 2016, 53(4): 41402
    Download Citation