• Journal of Inorganic Materials
  • Vol. 38, Issue 9, 1097 (2023)
Xu HAN, Hengda YAO, Mei LYU, Hongbo LU, and Jun ZHU*
Author Affiliations
  • Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
  • show less
    DOI: 10.15541/jim20220777 Cite this Article
    Xu HAN, Hengda YAO, Mei LYU, Hongbo LU, Jun ZHU. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097 Copy Citation Text show less
    References

    [1] X LUO, X LIN, F GAO et al. Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem., 65, 2369(2022).

    [2] Y RONG, Y HU, A MEI et al. Challenges for commercializing perovskite solar cells. Science, 361, eaat8235(2018).

    [3] Y DONG, Y ZOU, J SONG et al. Recent progress of metal halide perovskite photodetectors. J. Mater. Chem. C, 5, 11369(2017).

    [4] A KOJIMA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050(2009).

    [5] M KIN, J JEONG, H Z LU et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375, 302(2022).

    [6] . Best Research-cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220630.pdf

    [7] Y HU, L GAO, H SU et al. Amino acid-based low-dimensional management for enhanced perovskite solar cells. Sol. RRL, 6, 2200168(2022).

    [8] D LUO, R SU, W ZHANG et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater., 5, 44(2020).

    [9] L YANG, L FENG, Z LIU et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater., 34, 220168(2022).

    [10] J ZHU, Y QIAN, Z LI et al. Defect healing in FAPb(I1-xBrx)3 perovskites: multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability. Adv. Energy Mater., 12, 2200632(2022).

    [11] X LI, X WU, B LI et al. Modulating the deep-level defects and charge extraction for efficient perovskite solar cells with high fill factor over 86%. Energy Environ. Sci., 15, 4813(2022).

    [12] C CHEN, X WANG, Z LI et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed., 61(2021).

    [13] X DENG, L XIE, S WANG et al. Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chem. Eng. J., 125594(2020).

    [14] S WANG, A WANG, X DENG et al. Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A, 8, 12201(2020).

    [15] J CHEN, N PARK. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS. Energy Lett., 5, 2742(2020).

    [16] T KATO, N MIZOSHITA, K KISHIMOTO. Functional liquid- crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed., 45, 38(2006).

    [17] V ARIVUNITHI, S REDDY, V SREE et al. Efficiency exceeding 20% in perovskite solar cells with side-chain liquid crystalline polymer-doped perovskite absorbers. Adv. Energy Mater., 8, 1801637(2018).

    [18] V ARIVUNITHI, H PARK, S REDDY et al. A simple engineering strategy with side chain liquid crystal polymers in perovskite absorbers for high efficiency and stability. Org. Electron., 105987(2021).

    [19] X XIA, J PENG, Q WAN et al. Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability. ACS Appl. Mater. Interf., 13, 17677(2021).

    [20] Y HUANG, X LEI, T HE et al. Recent progress on formamidinium- dominated perovskite photovoltaics. Adv. Energy Mater., 12, 21006(2021).

    [21] J CORREA-BAENA, M SALIBA, T BUONASSISI et al. Promises and challenges of perovskite solar cells. Science, 358, 739(2017).

    [22] L TAO, Z WAGN, K DUAN et al. Liquid crystal molecule as “binding agent” enables superior stable perovskite solar cells with high fill factor. Sol. RRL, 3, 1900125(2019).

    [23] X DU, L ZHANG, R CHEN et al. Spontaneous interface healing by a dynamic liquid-crystal transition for high-performance perovskite solar cells. Adv. Mater., 34, 22073632(2022).

    [24] L CHEN, J CHEN, C WANG et al. High-light-tolerance PbI2 boosting the stability and efficiency of perovskite solar cells. ACS Appl. Mater. Interf., 13, 24692(2021).

    [25] Y LI, K CUI, X XU et al. Understanding the essential role of PbI2 films in a high-performance lead halide perovskite photodetector. J. Phys. Chem. C, 124, 15107(2020).

    [26] Y WU, Q WANG, Y CHEN et al. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defect synergistically. Energy Environ. Sci., 15, 4700(2022).

    [27] E DUIJINSTEE, J BALL, V CONE et al. Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett., 5, 376(2020).

    [28] R BUBE. Trap density determination by space-charge-limited currents. J. Chem. Phys., 33, 1733(1962).

    [29] P MAO, Q ZHOU, Z JIN et al. Efficiency-enhanced planar perovskite solar cells via an isopropanol/ethanol mixed solvent process. ACS Appl. Mater. Interf., 8, 23837(2016).

    Xu HAN, Hengda YAO, Mei LYU, Hongbo LU, Jun ZHU. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097
    Download Citation