• Laser & Optoelectronics Progress
  • Vol. 58, Issue 14, 1400001 (2021)
Shaohui Zhang, Guocheng Zhou, Baiqi Cui, Yao Hu, and Qun Hao*
Author Affiliations
  • School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP202158.1400001 Cite this Article Set citation alerts
    Shaohui Zhang, Guocheng Zhou, Baiqi Cui, Yao Hu, Qun Hao. Review of Fourier Ptychographic Microscopy: Models, Algorithms, and Systems[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1400001 Copy Citation Text show less
    References

    [1] Hawkes P, Spence J C H. Science of microscopy[M](2007).

    [2] Lohmann A W, Dorsch R G, Mendlovic D et al. Space-bandwidth product of optical signals and systems[J]. Journal of the Optical Society of America A, 13, 470-473(1996).

    [3] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 198, 82-87(2000).

    [4] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [5] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 38, 1328-1330(2013).

    [6] Zuo C, Chen Q, Sun J S et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 43, 0609002(2016).

    [7] Lichtman J W, Conchello J A. Fluorescence microscopy[J]. Nature Methods, 2, 910-919(2005).

    [8] Kim M K. Principles and techniques of digital holographic microscopy[J]. SPIE Reviews, 1, 018005(2010).

    [9] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [10] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 19, 780-782(1994).

    [11] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [12] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-795(2006).

    [13] Teague M R. Deterministic phase retrieval: a Green’s function solution[J]. Journal of the Optical Society of America, 73, 1434-1441(1983).

    [14] Zuo C, Li J J, Sun J S et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 135, 106187(2020).

    [15] Keller P J, Schmidt A D, Wittbrodt J et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J]. Science, 322, 1065-1069(2008).

    [16] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2769(1982).

    [17] Zhang W H, Cao L C, Brady D J et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 121, 093902(2018).

    [18] Fienup J R, Wackerman C C. Phase-retrieval stagnation problems and solutions[J]. Journal of the Optical Society of America A, 3, 1897-1907(1986).

    [19] Zhang F C, Rodenburg J M. Phase retrieval based on wave-front relay and modulation[J]. Physical Review B, 82, 121104(2010).

    [20] Zhang F C, Chen B, Morrison G R et al. Phase retrieval by coherent modulation imaging[J]. Nature Communications, 7, 13367(2016).

    [21] Marchesini S. Invitedarticle: a unified evaluation of iterative projection algorithms for phase retrieval[J]. Review of Scientific Instruments, 78, 011301(2007).

    [22] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [23] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy:a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [24] Pfeiffer F. X-ray ptychography[J]. Nature Photonics, 12, 9-17(2018).

    [25] Valzania L, Feurer T, Zolliker P et al. Terahertz ptychography[J]. Optics Letters, 43, 543-546(2018).

    [26] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).

    [27] Zheng G A, Yang C. Scalable gigapixel microscopy without mechanical scanning[C]. //Bio-Optics: Design and Application 2013, April 14-18, 2013, Waikoloa Beach, Hawaii, BT1A, 1(2013).

    [28] Zheng G A. Breakthroughs in photonics 2013: Fourier ptychographic imaging[J]. IEEE Photonics Journal, 6, 1-7(2014).

    [29] Song P M, Jiang S W, Zhang H et al. Super-resolution microscopy via ptychographic structured modulation of a diffuser[J]. Optics Letters, 44, 3645-3648(2019).

    [30] Bian Z C, Jiang S W, Song P M et al. Ptychographic modulation engine: a low-cost DIY microscope add-on for coherent super-resolution imaging[J]. Journal of Physics D: Applied Physics, 53, 014005(2020).

    [31] Song P M, Wang R H, Zhu J K et al. Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation[J]. Optics Letters, 45, 3486-3489(2020).

    [32] He X L, Jiang Z L, Kong Y et al. Fourier ptychography via wavefront modulation with a diffuser[J]. Optics Communications, 459, 125057(2020).

    [33] Yeh L H, Tian L, Waller L. Structured illumination microscopy with unknown patterns and a statistical prior[J]. Biomedical Optics Express, 8, 695-711(2017).

    [34] Pan A, Zhou M L, Zhang Y et al. Adaptive-window angular spectrum algorithm for near-field ptychography[J]. Optics Communications, 430, 73-82(2019).

    [35] Li J J, Matlock A C, Li Y Z et al. High-speed in vitro intensity diffraction tomography[J]. Advanced Photonics, 1, 066004(2019).

    [36] Sun J S, Chen Q, Zhang J L et al. Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography[J]. Optics Letters, 43, 3365-3368(2018).

    [37] Ou X, Horstmeyer R, Yang C et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 38, 4845-4848(2013).

    [38] Zhang S H, Hu Y, Wang Y et al. Theoretical analysis of diffraction imaging in Fourier ptychography microscopy[J]. Proceedings of SPIE, 10990, 109900A(2019).

    [39] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 39, 1326-1329(2014).

    [40] Goodman J W. Introduction to Fourier optics[M](2005).

    [41] Yang J Q, Ma X, Lin J X et al. Intensity correction research for Fourier ptychographic microscopy[J]. Laser & Optoelectronics Progress, 54, 031101(2017).

    [42] Cetin A E, Bozkurt A, Gunay O et al. Projections onto convex sets (POCS) based optimization by lifting[C]. //2013 IEEE Global Conference on Signal and Information Processing, December 3-5, 2013, Austin, TX, USA., 623(2013).

    [43] Gill P E, Murray W, Wright M H. Practical optimization[M](2019).

    [44] Rodenburg J, Maiden A. Ptychography[M]. //Hawkes P W, Spence J C H. Springer handbook of microscopy. Springer handbooks, 819-904(2019).

    [45] Bian L, Suo J, Chung J et al. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient[J]. Scientific Reports, 6, 27384(2016).

    [46] Yeh L H, Dong J, Zhong J S et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 23, 33214-33240(2015).

    [47] Zuo C, Sun J S, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 24, 20724-20744(2016).

    [48] Kreutz-Delgado K. The complex gradient operator and the CR-calculus[EB/OL]. (2009-06-26)[2021-04-20]. https://arxiv.org/abs/0906.4835v1

    [49] Hunger R. An introduction to complex differentials and complex differentiability[EB/OL]. [2021-04-20]. https://mediatum.ub.tum.de/doc/631019/631019.pdf

    [50] Yang C, Qian J, Schirotzek A et al. Iterative algorithms for ptychographic phase retrieval[EB/OL]. (2011-05-27)[2021-04-20]. https://arxiv.org/abs/1105.5628

    [51] Maiden A M, Humphry M J, Sarahan M C et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 120, 64-72(2012).

    [52] Tripathi A, McNulty I, Shpyrko O G. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods[J]. Optics Express, 22, 1452-1466(2014).

    [53] Dwivedi P, Konijnenberg A P, Pereira S F et al. Lateral position correction in ptychography using the gradient of intensity patterns[J]. Ultramicroscopy, 192, 29-36(2018).

    [54] Dwivedi P, Konijnenberg A P, Pereira S F et al. Position correction in ptychography using hybrid input-output (HIO) and cross-correlation[J]. Journal of Optics, 21, 035604(2019).

    [55] Rong L, Tang C, Wang D Y et al. Probe position correction based on overlapped object wavefront cross-correlation for continuous-wave terahertz ptychography[J]. Optics Express, 27, 938-950(2019).

    [56] Zhang S H, Zhou G C, Wang Y et al. A simply equipped Fourier ptychography platform based on an industrial camera and telecentric objective[J]. Sensors, 19, 4913(2019).

    [57] Sun J S, Chen Q, Zhang Y Z et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 7, 1336-1350(2016).

    [58] Eckert R, Phillips Z F, Waller L. Efficient illumination angle self-calibration in Fourier ptychography[J]. Applied Optics, 57, 5434-5442(2018).

    [59] Zhou A, Wang W, Chen N et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Optics Express, 26, 23661-23674(2018).

    [60] Phillips Z F, D’Ambrosio M V, Tian L et al. Multi-contrast imaging and digital refocusing on a mobile microscope with a domed LED array[J]. PLoS One, 10, e0124938(2015).

    [61] Wang Y, Zhou G C, Hu Y et al. Microscopic image enhancement based on Fourier ptychography technique[J]. Proceedings of SPIE, 10990, 109900B(2019).

    [62] Pan A, Zhang Y, Wen K et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers[J]. Optics Express, 26, 23119-23131(2018).

    [63] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [64] Ou X Z, Zheng G A, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 22, 4960-4972(2014).

    [65] Song P M, Jiang S W, Zhang H et al. Full-field Fourier ptychography (FFP): spatially varying pupil modeling and its application for rapid field-dependent aberration metrology[J]. APL Photonics, 4, 050802(2019).

    [66] Chen X, Zhu Y Q, Sun M L et al. Apodized coherent transfer function constraint for partially coherent Fourier ptychographic microscopy[J]. Optics Express, 27, 14099-14111(2019).

    [67] Chung J, Lu H W, Ou X Z et al. Wide-field Fourier ptychographic microscopy using laser illumination source[J]. Biomedical Optics Express, 7, 4787-4802(2016).

    [68] Kuang C F, Ma Y, Zhou R J et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 23, 26999-27010(2015).

    [69] Guo K K, Bian Z C, Dong S Y et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 6, 574-579(2015).

    [70] Pan A, Wen K, Yao B L. Linear space-variant optical cryptosystem via Fourier ptychography[J]. Optics Letters, 44, 2032-2035(2019).

    [71] Luisier F, Blu T, Unser M. Image denoising in mixed Poisson-Gaussian noise[J]. IEEE Transactions on Image Processing, 20, 696-708(2011).

    [72] Fan Y, Sun J S, Chen Q et al. Adaptive denoising method for Fourier ptychographic microscopy[J]. Optics Communications, 404, 23-31(2017).

    [73] Tian L, Li X, Ramchandran K et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 5, 2376-2389(2014).

    [74] Stockmar M, Zanette I, Dierolf M et al. X-ray near-field ptychography for optically thick specimens[J]. Physical Review Applied, 3, 014005(2015).

    [75] Luke D R. Relaxed averaged alternating reflections for diffraction imaging[J]. Inverse Problems, 21, 37-50(2005).

    [76] Wen Z W, Yang C, Liu X et al. Alternating direction methods for classical and ptychographic phase retrieval[J]. Inverse Problems, 28, 115010(2012).

    [77] Zhang Z Q, Maiden A M. A comparison of ptychographic phase retrieval algorithms[J]. Proceedings of SPIE, 10887, 108870V(2019).

    [78] Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine[J]. Optica, 4, 736-745(2017).

    [79] Odstrčil M, Lebugle M, Guizar-Sicairos M et al. Towards optimized illumination for high-resolution ptychography[J]. Optics Express, 27, 14981-14997(2019).

    [80] Li P, Edo T B, Rodenburg J M. Ptychographic inversion via Wigner distribution deconvolution: noise suppression and probe design[J]. Ultramicroscopy, 147, 106-113(2014).

    [81] Shi Y S, Wang Y L, Zhang S G. Generalized ptychography with diverse probes[J]. Chinese Physics Letters, 30, 054203(2013).

    [82] Bailey J P, Gidel G, Piliouras G. Finite regret and cycles with fixed step-size via alternating gradient descent-ascent[EB/OL]. (2019-07-09)[2021-04-20]. https://arxiv.org/abs/1907.04392v1

    [83] Zhang S H, Zhou G C, Hu Y et al. Asymmetric constraint Fourier ptychography microscopy[J]. IEEE Photonics Technology Letters, 33, 309-312(2021).

    [84] Pan B, Li K, Tong W. Fast, robust and accurate digital image correlation calculation without redundant computations[J]. Experimental Mechanics, 53, 1277-1289(2013).

    [85] Baydin A G, Pearlmutter B A, Radul A A et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 18, 1-43(2018).

    [86] Jiang S W, Guo K K, Liao J et al. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow[J]. Biomedical Optics Express, 9, 3306-3319(2018).

    [87] Nguyen T, Xue Y J, Li Y Z et al. Deep learning approach for Fourier ptychography microscopy[J]. Optics Express, 26, 26470-26484(2018).

    [88] Kellman M, Bostan E, Chen M et al. Data-driven design for Fourier ptychographic microscopy[C]. //2019 IEEE International Conference on Computational Photography (ICCP), May 15-17, 2019, Tokyo, Japan., 1-8(2019).

    [89] Horstmeyer R, Chen R Y, Kappes B et al. Convolutional neural networks that teach microscopes how to image[EB/OL]. (2017-09-21)[2021-04-20]. https://arxiv.org/abs/1709.07223

    [90] Zhang J Z, Xu T F, Shen Z Y et al. Fourier ptychographic microscopy reconstruction with multiscale deep residual network[J]. Optics Express, 27, 8612-8625(2019).

    [91] Zhang Y, Liu Y, Li X et al. Pgnn: physics-guided neural network for fourier ptychographic microscopy[EB/OL]. (2019-09-19)[2021-04-20]. https://arxiv.org/abs/1909.08869

    [92] Kappeler A, Ghosh S, Holloway J et al. Ptychnet: CNN based Fourier ptychography[C]. //2017 IEEE International Conference on Image Processing (ICIP), September 17-20, 2017, Beijing, China, 1712-1716(2017).

    [93] Kellman M R, Bostan E, Repina N A et al. Physics-based learned design:optimized coded-illumination for quantitative phase imaging[J]. IEEE Transactions on Computational Imaging, 5, 344-353(2019).

    [94] Wang F, Bian Y M, Wang H C et al. Phase imaging with an untrained neural network[J]. Light, Science & Applications, 9, 77(2020).

    [95] Bian Z C, Dong S Y, Zheng G A. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 21, 32400-32410(2013).

    [96] Claveau R, Manescu P, Elmi M et al. Digital refocusing and extended depth of field reconstruction in Fourier ptychographic microscopy[J]. Biomedical Optics Express, 11, 215-226(2020).

    [97] Zhou G, Zhang S, Zheng C et al. Fast digital refocusing and depth of field extended Fourier ptychography microscopy[EB/OL]. (2021-04-14)[2021-04-20]. https://arxiv.org/abs/2104.06580

    [98] Chen Z, Hu Y, Jiang X L et al. Resolution enhancement technique for high field microscopy based 3D reconstruction of micro structure topography[J]. Optical Technique, 44, 385-390(2018).

    [99] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2, 104-111(2015).

    [100] Horstmeyer R, Chung J, Ou X Z et al. Diffraction tomography with Fourier ptychography[J]. Optica, 3, 827-835(2016).

    [101] Zuo C, Sun J S, Li J J et al. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography[J]. Optics and Lasers in Engineering, 128, 106003(2020).

    [102] Ou X Z, Horstmeyer R, Zheng G A et al. High numerical aperture Fourier ptychography: principle, implementation and characterization[J]. Optics Express, 23, 3472-3491(2015).

    [103] Tian L, Liu Z J, Yeh L H et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2, 904-911(2015).

    [104] Dong S, Bian Z, Shiradkar R et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 22, 5455-5464(2014).

    [105] Zhou G C, Zhang S H, Hu Y et al. Adaptive high-dynamic-range Fourier ptychography microscopy data acquisition with a red-green-blue camera[J]. Optics Letters, 45, 4956-4959(2020).

    [106] Dong S Y, Shiradkar R, Nanda P et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 5, 1757-1767(2014).

    [107] Zhou Y, Wu J M, Bian Z C et al. Fourier ptychographic microscopy using wavelength multiplexing[J]. Journal of Biomedical Optics, 22, 066006(2017).

    [108] Guo K K, Dong S Y, Nanda P et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 23, 6171-6180(2015).

    [109] Sun J S, Chen Q, Zhang Y Z et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 24, 15765-15781(2016).

    [110] Bian L, Suo J, Situ G et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 39, 6648-6651(2014).

    [111] Zhou A, Chen N, Wang H C et al. Analysis of Fourier ptychographic microscopy with half of the captured images[J]. Journal of Optics, 20, 095701(2018).

    [112] Dong S, Guo K, Nanda P et al. FPscope: a field-portable high-resolution microscope using a cellphone lens[J]. Biomedical Optics Express, 5, 3305-3310(2014).

    [113] Aidukas T, Eckert R, Harvey A R et al. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware[J]. Scientific Reports, 9, 7457(2019).

    [114] Konda P C. Multi-aperture Fourier ptychographic microscopy: development of a high-speed gigapixel coherent computational microscope[D](2018).

    [115] Li H Y, Bozhok A, Takakura Y et al. Lensless inline digital holography versus Fourier ptychography: phase estimation of a large transparent bead[J]. Optical Engineering, 59, 083104(2020).

    [116] Luo W, Greenbaum A, Zhang Y B et al. Synthetic aperture-based on-chip microscopy[J]. Light: Science & Applications, 4, e16060(2015).

    [117] Zhang Z B, Zhou Y, Jiang S W et al. Invited article: mask-modulated lensless imaging with multi-angle illuminations[J]. APL Photonics, 3, 060803(2018).

    [118] Zhou Y, Wu J M, Suo J L et al. Single-shot lensless imaging via simultaneous multi-angle LED illumination[J]. Optics Express, 26, 21418-21432(2018).

    [119] Guo K K, Dong S Y, Zheng G A. Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 77-88(2016).

    [120] Pacheco S, Zheng G A, Liang R G. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 21, 026010(2016).

    [121] Pacheco S, Salahieh B, Milster T et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 40, 5343-5346(2015).

    [122] Song W, Matlock A, Fu S et al. LED array reflectance microscopy for scattering-based multi-contrast imaging[J]. Optics Letters, 45, 1647-1650(2020).

    [123] Lee H, Chon B H, Ahn H K. Reflective Fourier ptychographic microscopy using a parabolic mirror[J]. Optics Express, 27, 34382-34391(2019).

    [124] Salahieh B. Reflective mode Fourier ptychography[D](2015).

    [125] Holloway J, Wu Y, Sharma M K et al. SAVI:synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Science Advances, 3, e1602564(2017).

    [126] Dong S Y, Horstmeyer R, Shiradkar R et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 22, 13586-13599(2014).

    [127] Zheng G A, Shen C, Jiang S W et al. Concept, implementations and applications of Fourier ptychography[J]. Nature Reviews Physics, 3, 207-223(2021).

    [128] Zheng G. Fourier ptychographic imaging: a MATLAB tutorial[M](2016).

    [129] Konda P C, Loetgering L, Zhou K C et al. Fourier ptychography:current applications and future promises[J]. Optics Express, 28, 9603-9630(2020).

    [130] Pan A, Zuo C, Yao B. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Reports on Progress in Physics. Physical Society, 83, 096101(2020).

    [131] Sun J S, Zhang Y Z, Chen Q et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Optica Sinica, 36, 1011005(2016).

    [132] Bian L H, Suo J L, Dai Q H et al. Fourier ptychography for high space-bandwidth product microscopy[J]. Advanced Optical Technologies, 6, 449-457(2017).

    Shaohui Zhang, Guocheng Zhou, Baiqi Cui, Yao Hu, Qun Hao. Review of Fourier Ptychographic Microscopy: Models, Algorithms, and Systems[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1400001
    Download Citation