• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 6, 677 (2020)
Lingling JIANG1、* and Xianyou WU2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2020.06.006 Cite this Article
    JIANG Lingling, WU Xianyou. Passive coherent combination technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 677 Copy Citation Text show less
    References

    [1] 6Goodno G D, Komine H, McNaught S J, et al. Coherent combination of high-power, zigzag slab lasers [J]. Optics Letters, 2006, 31(9): 1247-1249.

    [2] Liu R Q, Peng C, Wu W S, et al. Coherent beam combination of multiple beams based on near-field angle modulation [J]. Optics Express, 2018, 2(2): 2045-2053.

    [3] Goodno G D, Shih C C, Rothenberg G E. Perturbative analysis of coherent combining efficiency with mismatched lasers [J]. Optics Express, 2010, 18(24): 25403-25414.

    [5] Wang D, Leng Y. Simulating a four-channel coherent beam combination system for femtosecond multi-petawatt lasers [J]. Optics Express, 2019, 27(25): 36137-36152.

    [6] Yang F, Hu M, He B, et al. Passive coherent beam combing of four Yb-doped fiber amplifiers chains with injection-locked seed source [J]. Optics Letters, 2013, 38(6): 854-856.

    [7] Fan T Y. Laser beam combing for high-power, high-radiance sources [J]. IEEE Journal of Quantum Electronics, 2005, 11(3): 567-577.

    [8] Zhou P, Wang X L, Ma Y X, et al. Stable coherent beam combination by active phasing a mutual injection-locked fiber laser array [J]. Optics Letters, 2010, 35(7): 950-952.

    [9] Albrodt P, Jamal M T, Hansen A K, et al. Coherent combining of high brightness tapered amplifiers for efficient non-linear conversion [J]. Optics Express, 2019, 27(2): 928-937.

    [10] Li W, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for advanced Virgo [J]. Optics Letters, 2016, 41(24): 5817-5820.

    [11] Jiang M, Su R, Zhang Z, et al. Coherent beam combining of fiber lasers using a CDMA-based single-frequency dithering technique [J]. Applied Optics, 2017, 5(15): 4255260.

    [12] Peng Q, Zhou Y, Chen Y, et al. Phase locking of fiber lasers by self-imaging resonators [J]. Electronics Letters, 2005, 41(4): 171-173.

    [13] Shirakawa A, Saitou T, Sekiguchi T, et al. Coherent addition of fiber lasers by use of a fiber coupler [J]. Optics Express, 2002, 10(21): 1167-1172.

    [14] Simpson T B, Gavrielides A, Peterson P. Extraction characteristics of a dual fiber compound cavity [J]. Optics Express, 2002, 10(20): 1060-1073.

    [15] Sabourdy D, Kermene V, Desfarges-Berthelemot A, et al. Efficient coherent combining of widely tunable fiber lasers [J]. Optics Express, 2003, 11(2): 87-97.

    [16] Wang B S, Mies E, Minden M, et al. All-fiber 50 W coherently combined passive laser array [J]. Optics Letters, 2009, 34(7): 863-865.

    [17] Sahuquillo J, Petit S, Selfa V, et al. A research-oriented course on advanced multicore architecture [C]. IEEE, Parallel & Distributed Processing Symposium Workshop, 2015.

    [18] Shalaby B M, Kermène V, Pagnoux D, et al. 19-cores Yb-fiber laser with mode selection for improved beam brightness [J]. Applied Physics B: Lasers and Optics, 2010, 100(4): 859-864.

    [19] Klenke A, Müller M, Stark H, et al. Coherently combined 16-channel multicore fiber laser system [J]. Optics Letters, 2018, 43(7): 1519-1522.

    [20] Corcoran C J, Durville F. Experimental demonstration of a phase-locked laser array using a self-Fourier cavity [J]. Applied Physics Letters, 2005, 8(20): 201118.

    [21] Bochove E J, Corcoran C J. In-phase supermode selection in a multicore fiber laser by means of self-Fourier external cavity [J]. Applied Optics, 2007, 4(22): 5009-5018.

    [22] Wrage M, Glas P, Fischer D, et al. Phase locking in a multicore fiber laser by means of a Talbot resonator [J]. Optics Letters, 2000, 25(19): 1436-1438.

    [23] He B, Lou Q H, Zhou J, et al. High power coherdent beam combination from two fiber lasers [J]. Optics Express, 2006, 14(7): 2721-2726.

    [24] Shakir S, Culver B, Nelson B, et al. Power scaling of passively phased fiber amplifier arrays [C]. SPIE, Optical Engineering and Application, 2008.

    [27] Sangwoo P, Seongwoo C, Jungsuk O, et al. Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation [J]. Optics Express, 2016, 24(8): 8641-8646.

    [28] Corcoran C J, Durville F. Passive coherent combination of a diode laser array with 35 elements [J]. Optics Express, 2014, 22(7): 8420-8425.

    [29] Schimmel G, Doyen I, Janicot S, et al. High-power operation of coherently coupled tapered laser diodes in an external cavity [C]. SPIE Laser, 2016.

    [33] Zhao P F, Dong Z Y, Zhang J Y, et al. Passive coherent beam combination of three Nd: YAG lasers using cascaded Michelson type compound cavities [J]. Optics Express, 2018, 2(14): 18019-18027.

    [34] Lei M, Gong M, Liu Q, et al. A new laser scheme for energy scaling with a composite six-mirror cavity [J]. Applied Physics B: Lasers and Optics, 2007, 89(2-3): 159-162.

    [35] Shardlow P C, Damzen M J. Phase conjugate self-organized coherent beam combination: A passive technique for laser power scaling [J]. Optics Letters, 2010, 30(11): 1080-1084.

    [36] Shardlow P C, Minassian A, Damzen M J. Coherent beam combining of self-adaptive lasers [C]. IEEE, 2011.

    [37] Ji X, Zhou P, Wang X L, et al. Passive coherent combination of all-fiber multichannel pulsed laser based on optical feed-back loop cavity [C]. International Society for Optics and Photonics, Fifth International Symposium on Photoelectronic Detection and Imaging, 2013.

    [38] Cheng Y, Sun B, Liu X, et al. Coherent combination of mutual injection phase-locked fiber lasers with a corner cube reflector [J]. Optics Communications, 2014, 313: 238-242.

    JIANG Lingling, WU Xianyou. Passive coherent combination technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(6): 677
    Download Citation