• Photonics Research
  • Vol. 12, Issue 5, 904 (2024)
Yunhao Fu1, Baisong Chen1, Wenqiang Yue1, Min Tao1, Haoyang Zhao1, Yingzhi Li1, Xuetong Li1, Huan Qu1, Xueyan Li1, Xiaolong Hu1、*, and Junfeng Song1、2
Author Affiliations
  • 1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • 2Peng Cheng Laboratory, Shenzhen 518000, China
  • show less
    DOI: 10.1364/PRJ.514468 Cite this Article Set citation alerts
    Yunhao Fu, Baisong Chen, Wenqiang Yue, Min Tao, Haoyang Zhao, Yingzhi Li, Xuetong Li, Huan Qu, Xueyan Li, Xiaolong Hu, Junfeng Song. Target-adaptive optical phased array lidar[J]. Photonics Research, 2024, 12(5): 904 Copy Citation Text show less
    References

    [1] D. Lee, G. Kang, B. Kim. Assistive delivery robot application for real-world postal services. IEEE Access, 9, 141981(2021).

    [2] S.-H. Chung. Applications of smart technologies in logistics and transport: a review. Transp. Res. E, 153, 102455(2021).

    [3] J. Holland, L. Kingston, C. McCarthy. Service robots in the healthcare sector. Robotics, 10, 47(2021).

    [4] L. Liu, S. Lu, R. Zhong. Computing systems for autonomous driving: state of the art and challenges. IEEE Internet Things J., 8, 6469-6486(2021).

    [5] Y. Xing, C. Lv, D. Cao. Toward human-vehicle collaboration: review and perspectives on human-centered collaborative automated driving. Transp. Res. Part C, 128, 103199(2021).

    [6] S. Alland, W. Stark, M. Ali. Interference in automotive radar systems: characteristics, mitigation techniques, and current and future research. IEEE Signal Process. Mag., 36, 45-59(2019).

    [7] P. Wang. Research on comparison of LiDAR and camera in autonomous driving. J. Phys. Conf. Ser., 2093, 012032(2021).

    [8] Y. Li, J. Ibanez-Guzman. Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process. Mag., 37, 50-61(2020).

    [9] H. Zhong, H. Wang, Z. Wu. A survey of LiDAR and camera fusion enhancement. Proc. Comput. Sci., 183, 579-588(2021).

    [10] M. E. Russell, A. Crain, A. Curran. Millimeter wave radar sensor for automotive intelligent cruise control (ICC). IEEE Trans. Microw. Theory Tech., 45, 2444-2453(1997).

    [11] E. Klinefelter, J. A. Nanzer. Automotive velocity sensing using millimeter-wave interferometric radar. IEEE Trans. Microw. Theory Tech., 69, 1096-1104(2021).

    [12] S. M. Patole, M. Torlak, D. Wang. Automotive radars: a review of signal processing techniques. IEEE Signal Process. Mag., 34, 22-35(2017).

    [13] R. Chen, H. Shu, B. Shen. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics, 17, 306-314(2023).

    [14] S. Scholes, G. Mora-Martín, F. Zhu. Fundamental limits to depth imaging with single-photon detector array sensors. Sci. Rep., 13, 176(2023).

    [15] F. Mattioli Della Rocca, H. Mai, S. W. Hutchings. A 128 × 128 SPAD motion-triggered time-of-flight image sensor with in-pixel histogram and column-parallel vision processor. IEEE J. Solid-State Circuits, 55, 1762-1775(2020).

    [16] Z. Khan, J.-C. Shih, R.-L. Chao. High-brightness and high-speed vertical-cavity surface-emitting laser arrays. Optica, 7, 267-275(2020).

    [17] W. Xu, Y. Guo, X. Li. Fully integrated solid-state LiDAR transmitter on a multi-layer silicon-nitride-on-silicon photonic platform. J. Lightwave Technol., 41, 832-840(2023).

    [18] R. A. Meyer. Optical beam steering using a multichannel lithium tantalate crystal. Appl. Opt., 11, 613-616(1972).

    [19] J. Sun, E. Timurdogan, A. Yaacobi. Large-scale nanophotonic phased array. Nature, 493, 195-199(2013).

    [20] A. Yaacobi, J. Sun, M. Moresco. Integrated phased array for wide-angle beam steering. Opt. Lett., 39, 4575-4578(2014).

    [21] B. Chen, Y. Li, L. Zhang. Unidirectional large-scale waveguide grating with uniform radiation for optical phased array. Opt. Express, 29, 20995-21010(2021).

    [22] Y. Li, B. Chen, Q. Na. Wide-steering-angle high-resolution optical phased array. Photon. Res., 9, 2511-2518(2021).

    [23] C.-P. Hsu, B. Li, B. Solano-Rivas. A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron., 27, 8300416(2021).

    [24] N. Li, C. P. Ho, J. Xue. A progress review on solid-state LiDAR and nanophotonics-based LiDAR sensors. Laser Photon. Rev., 16, 2100511(2022).

    [25] P. Wang, G. Luo, Y. Xu. Design and fabrication of a SiN-Si dual-layer optical phased array chip. Photon. Res., 8, 912-919(2020).

    [26] C. V. Poulton, A. Yaacobi, D. B. Cole. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett., 42, 4091-4094(2017).

    [27] Y. Lei, L. Zhang, Z. Yu. Si Photonics FMCW LiDAR chip with solid-state beam steering by interleaved coaxial optical phased array. Micromachines, 14, 1001(2023).

    [28] S. Chung, M. Nakai, S. Idres. 19.1 Optical phased-array FMCW LiDAR with on-chip calibration. IEEE International Solid-State Circuits Conference (ISSCC), 286-288(2021).

    [29] S. Tan, X. Dai, J. Lou. Low-power consumption InP-based optical phase arrays with non-uniformly spaced output waveguides. Opt. Express, 31, 3199-3211(2023).

    [30] C. V. Poulton, P. Russo, E. Timurdogan. High-performance integrated optical phased arrays for chip-scale beam steering and LiDAR. Conference on Lasers and Electro-Optics, ATu3R.2.

    [31] C. V. Poulton, M. J. Byrd, P. Russo. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron., 25, 7700108(2019).

    [32] C. V. Poulton, M. J. Byrd, P. Russo. Coherent LiDAR with an 8,192-element optical phased array and driving laser. IEEE J. Sel. Top. Quantum Electron., 28, 6100508(2022).

    [33] B. R. Moss, C. V. Poulton, M. J. Byrd. A 2048-channel, 125  μW/ch DAC controlling a 9,216-element optical phased array coherent solid-state LiDAR. IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 1-2(2023).

    [34] A. Kirillov, E. Mintun, N. Ravi. Segment anything. arXiv(2023).

    [35] A. Geiger, P. Lenz, C. Stiller. Vision meets robotics: the KITTI dataset. Int. J. Rob. Res., 32, 1231-1237(2013).

    [36] B. Chen, Y. Li, Q. Xie. SiN-on-SOI optical phased array LiDAR for ultra-wide field of view and 4D sensing. arXiv(2024).

    [37] M. Tao, T. Peng, C. Ding. A large-range steering optical phased array chip and high-speed controlling system. IEEE Trans. Instrum. Meas., 71, 2001212(2022).

    [38] L. Zhang, Y. Li, B. Chen. Two-dimensional multi-layered SiN-on-SOI optical phased array with wide-scanning and long-distance ranging. Opt. Express, 30, 5008-5018(2022).

    [39] L. Zhou, Z. Li, M. Kaess. Automatic extrinsic calibration of a camera and a 3D LiDAR using line and plane correspondences. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5562-5569(2018).

    [40] G. Jocher, A. Chaurasia, J. Qiu. Ultralytics YOLO (Version 8.0.0) [Computer software](2023).

    [41] J. Behley, M. Garbade, A. Milioto. SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 9296-9306(2019).

    Yunhao Fu, Baisong Chen, Wenqiang Yue, Min Tao, Haoyang Zhao, Yingzhi Li, Xuetong Li, Huan Qu, Xueyan Li, Xiaolong Hu, Junfeng Song. Target-adaptive optical phased array lidar[J]. Photonics Research, 2024, 12(5): 904
    Download Citation