• Acta Photonica Sinica
  • Vol. 49, Issue 11, 59 (2020)
Hua-bao CAO1, Hu-shan WANG1, Hao YUAN1、2, Xin LIU1、2, Pei HUANG1, Yi-shan WANG1、*, Wei ZHAO1, and Yu-xi FU1
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Institute of Optics and Precision Mechanics of CAS, Xi'an709, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • show less
    DOI: 10.3788/gzxb20204911.1149005 Cite this Article
    Hua-bao CAO, Hu-shan WANG, Hao YUAN, Xin LIU, Pei HUANG, Yi-shan WANG, Wei ZHAO, Yu-xi FU. Research Progress of Mid-infrared Femtosecond Sources Based on Optical Parametric Amplification (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 59 Copy Citation Text show less
    References

    [1] K OGUZHAN, M LUKE. Dual-comb spectroscopy in the spectral fingerprint region using OPGaP optical parametric oscillators. Optics Express, 25, 32713-32721(2017).

    [2] T HENRY, K ABIJITH, L ALEX. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).

    [3] B WOLTER, M PULLEN, A LE. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science, 354, 308(2016).

    [4] M HOHENLEUTNER, F LANGER, O SCHUBERT. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature, 523, 572-575(2015).

    [5] Chu-ji WANG, P SAHAY. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors, 9, 8230(2019).

    [6] I JOVANOVIC, G XU, S WANDEL. Mid-infrared laser system development for dielectric laser accelerators. Physics Procedia, 52, 68(2014).

    [7] P WHALEN, P PANAGIOTOPOULOS, M KOLESIK. Extreme carrier shocking of intense long-wavelength pulses. Physical Review A, 89, 023850(2014).

    [8] S ASILYEV, I MOSKALEV, M MIROV. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe. Optical Materials Express, 7, 2636-2650(2017).

    [9] S VASILYEV, J PEPPERS, I MOSKALEV. ATu4A. OSA Technical Digest, 4(2019).

    [10] D OKAZAKI, H ARAI, A ANISIMOV. Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 2.4  μm. Optics Letters, 44, 1750-1753(2019).

    [11] V KOZLOVSKY, M FROLOV, Y KOROSTELIN. Nanosecond-pulsed RT-operating at ~4 μm Fe:ZnSe laser pumped inside the cavity of a LD side-pumped Er:YLF laser. Optics Express, 26, 24497-24505(2018).

    [12] F CAPASSO. CWD1. OSA Technical Digest(2001).

    [13] Yu YAO, A HOFFMAN, C GMACHL. Mid-infrared quantum cascade lasers. Nature Photonics, 6, 432-439(2012).

    [14] A DUBIETIS, G JONUAUSKAS, A PISKARSKAS. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Optics Communications, 88, 433(1992).

    [15] Yu-xi FU, E TAKAHASHI, Qing-bin ZHANG. Optimization and characterization of dual-chirped optical parametric amplification. Journal of Optics, 17, 124001(2015).

    [16] B SCHMIDT, N THIRÉ, M BOIVIN. Frequency domain optical parametric amplification. Nature Communications, 5, 3643(2014).

    [17] R BOYD. Nonlinear Optics(2018).

    [18] V LOZHKAREV, G FREIDMAN, V GINZBURG. Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser. Laser Physics, 15, 319-1333(2005).

    [19] Y LIN, Y NABEKAWA, K MIDORIKAWA. Optical parametric amplification of sub-cycle shortwave infrared pulses. Nature Communications, 11, 3413(2020).

    [20] www.redoptronics.com

    [21] www.laser-crylink.com

    [22] www.ascut-bridge.de

    [23] www.eksmaoptics.com

    [24] A BALTUŠKA, T FUJI, T KOBAYASHI. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. Physical Review Letters, 88, 133901(2020).

    [25] A DUBIETIS, G TAMOŠAUSKAS, R ŠUMINAS. Ultrafast supercontinuum generation in bulk condensed media. Lithuanian Journal of Physics, 57, 113-157(2017).

    [26] V PERVAK, T AMOTCHKINA, D HAHNER. Complementary Si/SiO2 dispersive mirrors for 2-4 µm spectral range. Optics Express, 27, 34901-34906(2019).

    [27] F HABEL, V PERVAK. Dispersive mirror for the mid-infrared spectral range of 9–11.5  μm. Applied Optics, 56, C71-C74(2017).

    [28] https://refractiveindex.info/

    [29] P TOURNOIS. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Optics Communications, 140, 245-249(1997).

    [30] M BOCK, L GRAFENSTEIN, U GRIEBNER. Generation of millijoule few-cycle pulses at 5  μm by indirect spectral shaping of the idler in an optical parametric chirped pulse amplifier. Journal of the Optical Society of America B, 35, C18-C24(2018).

    [31] B GOLUBOVIC, M REED. All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2. Optics Letters, 23, 1760-1762(1998).

    [32] J GRUETZMACHER, N SCHERER. Few-cycle mid-infrared pulse generation, characterization, and coherent propagation in optically dense media. Review of Scientific Instruments, 73, 2227-2236(2002).

    [33] T WITTE, D ZEIDLER, D PROCH. Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared. Optics Letters, 27, 131-133(2002).

    [34] M GHOTBI, M EBRAHIM-ZADEH, V PETROV. Efficient 1 kHz femtosecond optical parametric amplification in BiB3O6 pumped at 800 nm. Optics Express, 14, 10621-10626(2006).

    [35] D BRIDA, C MANZONI, G CIRMI. Generation of broadband mid-infrared pulses from an optical parametric amplifier. Optics Express, 15, 15035-15040(2007).

    [36] M BRADLER, C HOMANN, E RIEDLE. Mid-IR femtosecond pulse generation on the microjoule level up to 5 μm at high repetition rates. Optics Letters, 36, 4212-4214(2011).

    [37] O ISAIENKO, E BORGUET. Ultra-broadband sum-frequency vibrational spectrometer of aqueous interfaces based on a non-collinear optical parametric amplifier. Optics Express, 20, 547-561(2012).

    [38] K KANESHIMA, N ISHII, K TAKEUCHI. Generation of carrier-envelope phase-stable mid-infrared pulses via dual-wavelength optical parametric amplification. Optics Express, 24, 8660-8665(2016).

    [39] T MORIMOTO, N SONO, T MIYAMOTO. Generation of a carrier-envelope-phase-stable femtosecond pulse at 10 µm by direct down-conversion from a Ti:sapphire laser pulse. Applied Physics Express, 10, 122701(2017).

    [40] Yu-xi FU, Bing XUE, K MIDORIKAWA. TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification. Applied Physics Letters, 112, 241105(2018).

    [41] Yu-xi FU, K MIDORIKAWA, E TAKAHASHI. Towards a petawatt-class fewcycle infrared laser system via dual-chirped optical parametric amplification. Scientific Reports, 8, 7692(2018).

    [42] T NUBBEMEYER, M KAUMANNS, M UEFFING. 1  kW, 200  mJ picosecond thin-disk laser system. Optics Letters, 42, 1381-1384(2017).

    [43] T DIETZ, M JENNE, D BAUER. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications. Optics Express, 28, 11415-11423(2020).

    [44] G ANDRIUKAITIS, T BALČIŪNAS, S ALIŠAUSKAS. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Optics Letters, 36, 2755-2757(2011).

    [45] P RIGAUD, A WALLE, M HANNA. Supercontinuum-seeded few-cycle mid-infrared OPCPA system. Optics Express, 24, 26494-26502(2016).

    [46] N THIRÉ, R MAKSIMENKA, B KISS. Highly stable, 15 W, few-cycle, 65 mrad CEP-noise mid-IR OPCPA for statistical physics. Optics Express, 26, 26907-26915(2018).

    [47] N THIRÉ, R MAKSIMENKA, B KISS. 4-W, 100-kHz, few-cycle mid-infrared source with sub-100-mrad carrier-envelope phase noise. Optics Express, 25, 1505-1514(2017).

    [48] T POPMINTCHEV, M CHEN, D OPMINTCHEV. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287(2012).

    [49] J WEISSHAUPT, V JUVÉ, M HOLTZ. High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses. Nature Photonics, 8, 927(2014).

    [50] A MITROFANOV, A VORONIN, D SIDOROV-BIRYUKOV. Mid-infrared laser filaments in the atmosphere. Scientific Reports, 5, 8368(2015).

    [51] M SEIDEL, X XIAO, S HUSSAIN. Multi-watt, multi-octave, mid-infrared femtosecond source. Science Advance, 4, 1526(2018).

    [52] Shi-zhen QU, Hou-kun LIANG, Kun LIU. 9  μm few-cycle optical parametric chirped-pulse amplifier based on LiGaS2. Optics Letters, 44, 2422-2425(2019).

    [53] M BRIDGER, O NARANJO-MONTOYA, A TARASEVITCH. Towards high power broad-band OPCPA at 3000 nm. Optics Express, 27, 31330-31337(2019).

    [54] . Large aperture single crystal ZnGeP2 for high-energy applications. Journal of Crystal Growth, 310, 1891(2008).

    [55] M HEMMER, D SÁNCHEZ, M JELÍNEK. 2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA. Optics Letters, 40, 451-454(2015).

    [56] S WANDEL, M LIN, Y YIN. Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP2. Optics Express, 24, 5287-5299(2016).

    [57] D SANCHEZ, M HEMMER, M BAUDISCH. 7  μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2  μm. Optica, 3, 147-150(2016).

    [58] T KANAI, P MALEVICH, S KANGAPARAMBIL. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier. Optics Letters, 42, 683-686(2017).

    [59] T STEINLE, D SÁNCHEZ. Table-top high-energy 7  μm OPCPA and 260  mJ Ho:YLF pump laser. Optics Letters, 44, 3194-3197(2019).

    [60] Yan-chun YIN, A CHEW, Xiao-ming REN. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping. Scientific Reports, 7, 45794(2017).

    [61] Jing-wei ZHANG, F SCHULZE. High-power, high-efficiency Tm:YAG and Ho:YAG thin-disk lasers. Laser and Photonics Reviews, 12, 1700273(2018).

    [62] K MECSEKI, M WINDELER, A MIAHNAHRI. High average power 88  W OPCPA system for high-repetition-rate experiments at the LCLS x-ray free-electron laser. Optics Letters, 44, 1257-1260(2019).

    [63] R RIEDEL, J ROTHHARDT, K BEIL. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification. Optics Express, 22, 17607-17619(2014).

    [64] C ROTHHARDT, J ROTHHARDT, A KLENKE. BBO-sapphire sandwich structure for frequency conversion of high power lasers. Optical Materials Express, 4, 1092-1103(2014).

    [65] A CAMPER, H PARK, Y LAI. Tunable mid-infrared source of light carrying orbital angular momentum in the femtosecond regime. Optics Letters, 42, 3769-3772(2017).

    [66] Jun-yu QIAN, Yu-jie PENG, Yan-yan LI. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Research, 8, 421-425(2020).

    [67] Hai-gang LIU, Hui LI, Yuan-lin ZHENG. Nonlinear frequency conversion and manipulation of vector beams. Optics Letters, 43, 5981-5984(2018).

    Hua-bao CAO, Hu-shan WANG, Hao YUAN, Xin LIU, Pei HUANG, Yi-shan WANG, Wei ZHAO, Yu-xi FU. Research Progress of Mid-infrared Femtosecond Sources Based on Optical Parametric Amplification (Invited)[J]. Acta Photonica Sinica, 2020, 49(11): 59
    Download Citation