• Laser & Optoelectronics Progress
  • Vol. 60, Issue 17, 1714007 (2023)
Lan Shi and Shuping Li*
Author Affiliations
  • College of Physical Science and Technology, Xiamen University, Xiamen 361005, Fujian , China
  • show less
    DOI: 10.3788/LOP222235 Cite this Article Set citation alerts
    Lan Shi, Shuping Li. Research on Optimization of p-Type Waveguide Layer and Active Region of InGaN-Based Blue Laser Diodes[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1714007 Copy Citation Text show less
    References

    [1] Tian A Q, Hu L, Zhang L Q et al. Design and growth of GaN-based blue and green laser diodes[J]. Science China Materials, 63, 1348-1363(2020).

    [2] Murayama M, Nakayama Y, Yamazaki K et al. Watt-class green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi (a), 215, 1700513(2018).

    [3] Monavarian M, Rashidi A, Feezell D. A decade of nonpolar and semipolar III-nitrides: a review of successes and challenges[J]. Physica Status Solidi (a), 216, 1800628(2018).

    [4] Li J M, Liu Z Q, Wei T B et al. Development summary of semiconductor lighting in China[J]. Acta Optica Sinica, 41, 0116002(2021).

    [5] Kothuru A, Goel S. Leveraging 3-D printer with 2.8-W blue laser diode to form laser-induced graphene for microfluidic fuel cell and electrochemical sensor[J]. IEEE Transactions on Electron Devices, 69, 1333-1340(2022).

    [6] Sun T Y, Xia M J, Qiao L. Failure mechanism and detection analysis of semiconductor laser[J]. Laser & Optoelectronics Progress, 58, 1900003(2021).

    [7] Jia C Y, Yu T J, Lu H M et al. Performance improvement of GaN-based LEDs with step stage InGaN/GaN strain relief layers in GaN-based blue LEDs[J]. Optics Express, 21, 8444-8449(2013).

    [8] Liu J X, Wang J, Sun X J et al. Performance improvement of InGaN-based laser grown on Si by suppressing point defects[J]. Optics Express, 27, 25943-25952(2019).

    [9] Grupen M, Hess K. Simulation of carrier transport and nonlinearities in quantum-well laser diodes[J]. IEEE Journal of Quantum Electronics, 34, 120-140(1998).

    [10] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [11] Tsai Y C, Bayram C, Leburton J P. Effect of auger electron-hole asymmetry on the efficiency droop in InGaN quantum well light-emitting diodes[J]. IEEE Journal of Quantum Electronics, 58, 3300109(2022).

    [12] Roy S, Ahsan S M T, Mondol N et al. Comparative investigation into key optoelectronic characteristics of semipolar InGaN blue laser diodes: a strategy to mitigate quantum-confine stark effect[J]. Results in Physics, 34, 105246(2022).

    [13] Ikeda M, Zhang F, Zhou R L et al. Thermionic emission of carriers in InGaN/(In)GaN multiple quantum wells[J]. Japanese Journal of Applied Physics, 58, SCCB03(2019).

    [14] Le L C, Zhao D G, Jiang D S et al. Suppression of electron leakage by inserting a thin undoped InGaN layer prior to electron blocking layer in InGaN-based blue-violet laser diodes[J]. Optics Express, 22, 11392-11398(2014).

    [15] Liang F, Zhao D G, Jiang D S et al. Improvement of slope efficiency of GaN-Based blue laser diodes by using asymmetric MQW and InxGa1-xN lower waveguide[J]. Journal of Alloys and Compounds, 731, 243-247(2018).

    [16] Hou Y F, Zhao D G, Liang F et al. Performance improvement of GaN-based blue and ultraviolet double quantum well laser diodes by using stepped-doped lower waveguide[J]. Materials Science in Semiconductor Processing, 121, 105355(2021).

    [17] Liang F, Zhao D G, Liu Z S et al. Improved performance of GaN-based blue laser diodes using asymmetric multiple quantum wells without the first quantum barrier layer[J]. Optics Express, 30, 9913-9923(2022).

    [18] Zhou K, Ikeda M, Liu J P et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Applied Physics Letters, 105, 173510(2014).

    [19] Liu J X, Qie H R, Sun Q et al. Enhanced carrier confinement and radiative recombination in GaN-based lasers by tailoring first-barrier doping[J]. Optics Express, 28, 32124-32131(2020).

    [20] Liang F, Zhao D G, Liu Z S et al. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature[J]. Journal of Semiconductors, 42, 70-72(2021).

    [21] Zhong Z B, Lu S Q, Li J C et al. Design and fabrication of high power InGaN blue laser diode over 8 W[J]. Optics & Laser Technology, 139, 106985(2021).

    [22] Goudon T, Miljanović V, Schmeiser C. On the Shockley-read-hall model: generation-recombination in semiconductors[J]. SIAM Journal on Applied Mathematics, 67, 1183-1201(2007).

    [23] Brendel M, Kruse A, Jönen H et al. Auger recombination in GaInN/GaN quantum well laser structures[J]. Applied Physics Letters, 99, 031106(2011).

    [24] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures[J]. Applied Physics Letters, 80, 1204-1206(2002).

    [25] Li X, Zhao D G, Jiang D S et al. The effectiveness of electron blocking layer in InGaN-based laser diodes with different indium content[J]. Physica Status Solidi (a), 213, 2223-2228(2016).

    [26] Li C K, Piccardo M, Lu L S et al. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes[J]. Physical Review B, 95, 144206(2017).

    [27] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 89, 5815-5875(2001).

    [28] Moustakas T D, Paiella R. Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz[J]. Reports on Progress in Physics, 80, 106501(2017).

    Lan Shi, Shuping Li. Research on Optimization of p-Type Waveguide Layer and Active Region of InGaN-Based Blue Laser Diodes[J]. Laser & Optoelectronics Progress, 2023, 60(17): 1714007
    Download Citation