• Infrared and Laser Engineering
  • Vol. 53, Issue 6, 20240083 (2024)
Yang ZHANG1,2,3, Defeng MO1,2,3, Jun LI1,2, Xinmin SHI1,2,3..., Cui FAN1,2 and Xue LI1,2,3|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2National Key Laboratory of Infrared detector, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20240083 Cite this Article
    Yang ZHANG, Defeng MO, Jun LI, Xinmin SHI, Cui FAN, Xue LI. Research on the thermomechanical architecture of Dewar of the large format infrared detector (inner cover paper)[J]. Infrared and Laser Engineering, 2024, 53(6): 20240083 Copy Citation Text show less
    Layout of the butting manner of FPA
    Fig. 1. Layout of the butting manner of FPA
    Exploded view of Dewar components
    Fig. 2. Exploded view of Dewar components
    Three-point adjustment structure based on precision washer
    Fig. 3. Three-point adjustment structure based on precision washer
    Multi-point coupling cold strap
    Fig. 4. Multi-point coupling cold strap
    Schematic diagram of cold transferring of Dewar for large area array infrared detector
    Fig. 5. Schematic diagram of cold transferring of Dewar for large area array infrared detector
    Finite element meshing of cold platform components
    Fig. 6. Finite element meshing of cold platform components
    Dewar component thermal simulation note. (a) Cold plate temperature distribution; (b) Focal plane temperature distribution
    Fig. 7. Dewar component thermal simulation note. (a) Cold plate temperature distribution; (b) Focal plane temperature distribution
    Picture of Dewar assembly for large area array infrared detector
    Fig. 8. Picture of Dewar assembly for large area array infrared detector
    The simulation and test data of the focal plane temperature uniformity
    Fig. 9. The simulation and test data of the focal plane temperature uniformity
    Curves of mass flux vs time with mass flow method
    Fig. 10. Curves of mass flux vs time with mass flow method
    Dewar component swept sine test. (a) X direction; (b) Y direction; (c) Z direction
    Fig. 11. Dewar component swept sine test. (a) X direction; (b) Y direction; (c) Z direction
    Satellite/infrared cameraNumber of sub-module pixelsArray sizeTotal number of pixelsFlatness of focal plane array/μmWorking temperature (uniformity of focal plane temperature)/K
     注:“(−)”代表未查到相关指标
    NOAO/IR[10]2 k×2 k2×24 k×4 k1540(±0.2)
    VISTA[11]2 k×2 k4×48 k×8 k1280(±0.5)
    LDCM/TIRS[12]640×5123×11280×1024±8.443(−)
    JWST/NIRCam[13]4 k×4 k2×28 k×8 k±2035(−)
    Euclid/NISP[1415]2 k×2 k4×48 k×8 k±1095(±1)
    Roman/WFI[16]4 k×4 k3×612 k×24 k95(±0.75)
    ELT/MICADO[17]4 k×4 k3×312 k×12 k
    ELT/METIS[17]2 k×2 k3×36 k×6 k80(−)
    Table 1. Development table of mosaic large area array infrared detector
    ItemTolerance/μmComments
    Detector optical surface±2.5General specification
    SiC substrate height±5Machining accuracy
    Cold plate flatness±5Machining accuracy
    Total budget±7.5(summed in quadrature)
    Table 2. Detector plane tolerance budget breakdown
    Yang ZHANG, Defeng MO, Jun LI, Xinmin SHI, Cui FAN, Xue LI. Research on the thermomechanical architecture of Dewar of the large format infrared detector (inner cover paper)[J]. Infrared and Laser Engineering, 2024, 53(6): 20240083
    Download Citation