[1] D. Y. Lin, W. Y. Ma, “Single molecule fluorescence imaging within living cells," Physics 36, 783–790 (2007).
[2] W. Becker, “Fluorescence lifetime imaging-techniques and applications," J. Microsc. 247, 119–136 (2012).
[3] R. N. Day, “Measuring F€orster resonance energy transfer using fluorescence lifetime imaging microscopy," Microsc. Today 23, 44–51 (2015).
[4] A. Le Marois, K. Suhling, Multi-Parametric Live Cell Microscopy of 3D Tissue Models, pp. 31–48, Springer, Cham (2017).
[5] W. Becker, Advanced Time-Correlated Single Photon Counting Applications, pp. 1–25, Springer, Berlin (2015).
[6] K. Suhling, L. M. Hirvonen, J. A. Levitt, P. H. Chung, C. Tregido, A. Le Marois, D. A. Rusakov, K. Y. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Dimble, Fluorescence Lifetime Imaging (FLIM): Basic Concepts and Recent Applications, pp. 119–188, Springer, Cham (2017).
[7] M. Y. Berezin, S. Achilefu, “Lifetime measurement and biological imaging," Chem. Rev. 110, 2641–2684 (2010).
[8] D. Y. Lin, T. Luo, L. W. Liu, Y. Lu, S. X. Liu, Z. Yuan, J. L. Qu, “Implementation of FLIM and SIFT for improved intraoperative delineation of glioblastoma margin," Chin. Opt. Lett. 15, 090006 (2017).
[9] T. Luo, D. Y. Lin, T. Zhou, Y. Lu, S. X. Liu, J. L. Qu, “Identification and characterization of different tissues in blood vessel by multiplexed fluorescence lifetimes," Analyst 143, 2185–2436 (2018).
[10] H. Kurokawa, H. Ito, M. Inoue, K. Tabata, Y. Sato, K. Yamagata, S. Kizaka-Kondoh, T. Kadonosono, S. Yano, M. Inoue, T. Kamachi, “High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime," Sci. Rep. 5, 1–13 (2015).
[11] S. Kalinina, J. Breymayer, P. Schafer, E. Calzia, V. Shcheslavskiy, W. Becker, A. Rück, “Correlative NAD(P)H-FLIM and oxygen sensing-PLIM for metabolic mapping," J. Biophotonics 9, 800–811 (2016).
[12] K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton, R. M. Clegg, “Two-photon fluorescence imaging of the skin stratum corneum pH gradient," Biophys. J. 83, 1682–1690 (2002).
[13] S. M. Levchenko, A. Pliss, J. L. Qu, “Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes," J. Innov. Opt. Heal. Sci. 11, 1730009 (2017).
[14] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, “In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Natl. Acad. Sci. 104, 19494–19499 (2007).
[15] V. V. Ghukasyan, F. J. Kao, “Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide," J. Phys. Chem. C 113, 11532–11540 (2009).
[16] L. E. Shimolina, M. A. Izquierdo, I. Lopez-Duarte, J. A. Bull, M. V. Shirmanova, L. G. Klapshina, E. V. Zagaynova, M. K. Kuimova, “Imaging tumor microscopic viscosity in vivo using molecular rotors," Sci. Rep. 7, 41097 (2017).
[17] M. K. Kuimova, G. Yahioglu, J. A. Levitt, K. Suhling, “Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging," J. Am. Chem. Soc. 130, 6672–6673 (2008).
[18] F. J. Kao, G. Keiser, A. Gogoi, Advanced Optical Methods of Brain Imaging, pp. 103–110, Springer, Berlin (2019).
[19] W. Becker, Advanced Time-Correlated Single Photon Counting Applications, pp. 189–211, Springer, Berlin (2015).
[20] K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, S. Uchiyama, “Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy," Nat. Commun. 3, 705 (2012).
[21] D. Llères, A. P. Bailly, A. Perrin, D. G. Norman, D. P. Xirodimas, R. Feil, “Quantitative FLIMFRET microscopy to monitor nanoscale chromatin compaction in-vivo reveals structural roles of condensin complexes," Cell Rep. 18, 1791–1803 (2017).
[22] X. B. Liu, D. Y. Lin, Q. Q. Wu, W. Yan, T. Luo, Z. G. Yang, J. L. Qu, “Recent progress of fluorescence lifetime imaging microscopy technology and its application," Acta Phys. Sin. 67, 178701 (2018).
[23] W. Becker, Advanced Time-Correlated Single Photon Counting Applications, pp. 246–276, Springer, Berlin (2015).
[24] A. Periasamy, R. M. Clegg, FLIM Microscopy in Biology and Medicine, pp. 1–472, CRC Press, Florida (2009).
[25] P. Roudot, C. Kervrann, C. M. Blouin, F. Waharte, “Lifetime estimation of moving subcellular objects in frequency-domain fluorescence lifetime imaging microscopy," J. Opt. Soc. Am. A 32, 1821–1835 (2015).
[26] C. D. Wilms, H. Schmidt, J. Eilers, “Quantitative two-photon Ca2t imaging via fluorescence lifetime analysis," Cell Calcium 40, 73–79 (2006).
[27] K. Y. Zheng, T. P. Jensen, D. A. Rusakov, “Monitoring intracellular nanomolar calcium using fluorescence lifetime imaging," Nat. Protoc. 13, 581–597 (2018).
[28] M. N. Pastore, H. Studier, C. S. Bonder, M. S. Roberts, “Non-invasive metabolic imaging of melanoma progression," Exp. Dermatol. 26, 607–614 (2017).
[29] S. F. Silva, A. Batista, O. C. Castejon, M. J. Quadrado, J. P. Domingues, M. Morgado, “Development of a time-gated fluorescence lifetime microscope for in vivo corneal metabolic imaging," Proc. SPIE 9537, 953709 (2015).
[30] R. N. Day, “Measuring protein interactions using Forster resonance energy transfer and fluorescence lifetime imaging microscopy," Methods 66, 200–207 (2014).
[31] J. L. Qu, Z. Y. Lin, L. X. Liu, X. Guo, D. N. Chen, H. B. Niu, “Two-photon excited fluorescence lifetime imaging microscopy for FRET study on protein interactions," Proc. SPIE 5630, 517–522 (2005).
[32] W. Becker, A. Bergmann, Lifetime-resolved imaging in nonlinear microscopy, Handbook of Biomedical Nonlinear Optical Microscopy, B. R. Masters, P. T. C. So, Eds., Oxford University Press, New York (2008), pp. 499–556.
[33] M. K€ollner, J. Wolfrum, “How many photons are necessary for fluorescence-lifetime measurements?" Phys. Chem. Lett. 200, 199–204 (1992).
[34] H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. van Sark, “Fluorescence lifetime imaging in scanning microscopes: Acquisition speed, photon economy and lifetime resolution," J. Microsc. 206, 218–224 (2002).
[35] J. Philip, K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging," J. Opt. Soc. Am. 20, 368–379 (2003).
[36] A. Esposito, H. C. Gerritsen, F. S. Wouters, “Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: Photon economy and acquisition speed," J. Opt. Soc. Am. A 24, 3261–3273 (2007).
[37] W. Becker, The bh TCSPC Handbook, 7th Edition, Becker & Hickl GmbH (2017), http://www.beckerhickl.com.
[38] J. J. Fisz, “Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy," J. Phys. Chem. A 111, 12867–12870 (2007).
[39] W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer, Berlin (2005).
[40] B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire singlephoton detector," arxiv:1804.06839.
[41] S. Orthaus-Mueller, B. Kraemer, R. Dowler, A. Devaux, A. Tannert, T. Roehlicke, M. Wahl, H. J. Rahn, R. Erdmann, “rapidFLIM: The new and innovative method for ultrafast FLIM imaging," Biophys. J. 112, 298a (2017).
[42] D. Tyndall, B. R. Rae, D. D. U. Li, J. Arlt, A. Johnston, J. A. Richardson, R. K. Henderson, “A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13m CMOS," IEEE Trans. Biomed. Circuits. Syst. 6, 562–570 (2012).
[43] W. Becker, A. Bergmann, G. Biscotti, K. Koenig, I. Riemann, L. Kelbauskas, C. Biskup, “High-speed FLIM data acquisition by time-correlated single photon counting," Proc. SPIE 5323, 27–35 (2004).
[44] W. Becker, B. Su, A. Bergmann, “Fast-acquisition multispectral FLIM by parallel TCSPC," Proc. SPIE 7183, 718305 (2009).
[45] Becker & Hickl GmbH, “Fast-Acquisition TCSPC FLIM system with sub-25 ps IRF width," (2018), http://www.becker-hickl.com.
[46] Becker & Hickl GmbH, “Sub-20ps IRF width from hybrid detectors and MCP-PMTs" (2017), Application Note, http://www.becker-hickl.com.
[47] W. Becker, H. Studier, C. Wetzker, “Ultra-fast HPM detectors improve NAD(P)H FLIM," Proc. SPIE 10498, 1049806 (2018).
[48] Becker & Hickl GmbH, “Fast-acquisition multiphoton FLIM with the Zeiss LSM 880 NLO," Application Note, http://www.becker-hickl.com.
[49] S. C. Liu, Z. M. Zhang, J. Y. Zheng, L. Xu, C. F. Kuang, X. Liu, “Parallelized fluorescence lifetime imaging microscopy (FLIM) based on photon reassignment," Opt. Commun. 421, 83–89 (2018).
[50] Becker & Hickl GmbH, “DCS-120 confocal scanning FLIM systems," (2017), Handbook, http://www.becker-hickl.com.
[51] Becker & Hickl GmbH, “Modular FLIM systems for Zeiss LSM 710/780/880 family laser scanning microscopes," (2017), Handbook, http://www.becker-hickl.com.
[52] B. Su, V. Katsoulidou, W. Becker, “Recording fast time-series of fluorescence lifetime images by TCSPC FLIM," J. Shenzhen Univ. Sci.Eng. 25, 238–243 (2008).
[53] V. Katsoulidou, A. Bergmann, W. Becker, “How fast can TCSPC FLIM be made?" Proc. SPIE 6771, 67710B (2007).
[54] J. B. Pawley, Handbook of Biological Confocal Microscopy, pp. 488–500, Springer, Boston (2006).
[55] W. Becker, Advanced Time-Correlated Single Photon Counting Applications, pp. 65–117, Springer, Berlin (2015).
[56] W. Denk, J. H. Strickler, W. Webb “Two-photon laser scanning fluorescence microscopy," Science 248, 73–76 (1990).
[57] K. K€onig, “Multiphoton microscopy in life sciences," J. Microsc. 200, 83–104 (2000).
[58] J. Qi, Y. H. Shao, L. X. Liu, K. G. Wang, T. S. Chen, J. L. Qu, H. B. Niu, “Fast flexible multiphoton fluorescence lifetime imaging using acoustooptic deflector," Opt. Lett. 38, 1697–1699 (2013).
[59] Q. Q. Wu, J. Qi, D. Y. Lin, W. Yan, R. Hu, X. Peng, J. L. Qu, “Simultaneous acquisition of trajectory and fluorescence lifetime of moving single particles," Proc. SPIE 10069, 1006922 (2017).
[60] W. Yan, X. Peng, J. Qi, J. Gao, S. P. Fan, Q. Wang, J. L. Qu, H. B. Niu, “Dynamic fluorescence lifetime imaging based on acousto-optic deflectors," J. Biomed. Opt. 19, 116004 (2014).
[61] S. Kumar, C. Dunsby, P. A. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, P. M. W. French, “Multifocal multiphoton excitation and time correlated single photon counting detection for 3D fluorescence lifetime imaging," Opt. Exp. 15, 12548–12561 (2007).
[62] S. P. Poland, N. Krstajic, J. Monypenny, S. Coelho, D. Tyndall, R. J. Walker, V. Devauges, J. Richardson, N. Dutton, P. Barber, D. D. U. Li, K. Suhling, T. Ng, R. K. Henderson, S. M. Ameer-Beg, “A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging," Biomed. Opt. Exp. 6, 277–296 (2015).
[63] N. Krstajic, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays," Opt. Lett. 40, 4305–4308 (2015).
[64] N. Krstajic, S. Poland, D. Tyndall, R. Walker, S. Coelho, D. D. U. Li, J. Richardson, S. Ameer-Beg, R. Henderson, “Improving TCSPC data acquisition from CMOS SPAD arrays," Proc. SPIE 8797, 879709 (2013).
[65] S. P. Poland, S. Coelho, N. Krstajic, D. Tyndall, R. Walker, J. Monypenny, D. D. U. Li, R. Henderson, S. Ameer-Beg, “Development of a fast TCSPC FLIM-FRET imaging system," Proc. SPIE 8588, 85880X (2013).
[66] S. P. Poland, J. A. Levitt, N. Krstajic, A. Erdogan, R. J. Walker, V. Devauges, T. Ng, R. K. Henderson, S. M. Ameer-Beg, “A multifocal multiphoton volumetric imaging approach for high speed time-resolved FRET imaging in vivo," Biophys. J. 110, 165a (2016).
[67] J. A. Levitt, P. E. Morton, G. O. Fruhwirth, G. Santis, P. H. Chung, M. Parsons, K. Suhling, “Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells," Biomed. Opt. Express 6, 3842–3854 (2015).
[68] Y. Teijeiro-Gonzalez, A. Le Marois, A. M. Economou, L. M. Hirvonen, J. A. Levitt, A. J. Beavil, R. L. Beavil, A. Crnjar, C. Molteni, E. Ortiz-Zapater, M. Parsons, K. Suhling, “Fluorescence recovery after photobleaching (FRAP) with simultaneous fluorescence lifetime and time-resolved fluorescence anisotropy imaging (FLIM & tr-FAIM)," Proc. SPIE 10883, 108830A (2019).
[69] W. Becker, V. Shcheslavkiy, S. Frere, I. Slutsky, “Spatially resolved recording of transient fluorescence-lifetime effects by line-scanning TCSPC," Microsc. Res. Tech. 77, 216–224 (2014).
[70] L. M. Hirvonen, K. Suhling, “Wide-field TCSPC: Methods and applications," Meas. Sci. Technol. 28, 012003 (2016).
[71] W. Becker, L. M. Hirvonen, J. Milnes, T. Conneely, O. Jagutzki, H. Netz, S. Smietana, K. Suhling, “A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode," Rev. Sci. Instrum. 87, 093710 (2016).
[72] Y. Prokazov, E. Turbin, A. Weber, R. Hartig, W. Zuschratter, “Position sensitive detector for fluorescence lifetime imaging," J. Instrum. 9, 12015 (2014).
[73] L.Philipsen, A. V. Reddycherla, R. Hartig, J.Gumz, M. Kastle, A. Kritikos, M. P. Poltorak, Y. Prokazov, E. Turbin, A. Weber,W. Zuschratter, B. Schraven, L. Simeoni, A. J. Müller, “De novo phosphorylation and conformational opening of the tyrosine kinase Lck act in concert to initiate T cell receptor signaling," Sci. Signal. 10, eaaf4736 (2017).
[74] M. A. Karami, M. Ansarian, “Neural imaging using single-photon avalanche diodes," Basic Clin. Neurosci. 8, 19–26 (2017).
[75] M. Gersbach, R. Trimananda, Y. Maruyama, M. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. K. Henderson, E. Charbon, “High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor," Proc. SPIE 7780, 77801H (2010).
[76] R. M. Field, S. Realov, K. L. Shepard, “A 100 fps, time-correlated single-photon-counting-based fluorescence-lifetime imager in 130 nm CMOS," IEEE J. Solid-State Circuits 49, 867–880 (2014).
[77] R. M. Field, High-speed wide-field time-correlated single-photon counting fluorescence lifetime imaging microscopy, Ph.D. Thesis, Columbia University, Manhattan, USA (2014).
[78] D. Palubiak, M. M. El-Desouki, O. Marinov, M. J. Deen, Q. Y. Fang, “High-speed, single-photon avalanche-photodiode imager for biomedical applications," IEEE Sens. J. 11, 2401–2412 (2011).
[79] C. Bruschini, H. Homulle, E. Charbon, “Ten years of biophotonics single-photon SPAD imager applications: retrospective and outlook," SPIE BiOS. 10069, 100691S (2018).
[80] K. M. Nie, X. L. Wang, J. Qiao, J. T. Xu, “A full parallel event driven readout technique for area array spad flim image sensors," Sensors 16, 160 (2016).
[81] I. Vornicu, R. Carmona-Galan, E. Rodriguez-Vazquez, “Compensation of PVT variations in ToF imagers with in-pixel TDC," Sensors 17, 1072 (2017).
[82] C. Zhang, S. Lindner, I. M. Antolovic, J. M. Pavia, M. Wolf, E. Charbon, “A 30-frames's, 252 x 144 SPAD flash LiDAR with 1728 dual-clock 48.8-ps TDCs, and pixel-wise integrated histogramming," IEEE. J. Solid-State Circuits 54, 1137–1151 (2019).
[83] R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. C. Chen, D. D. U. Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, D. J. S. Birch, “A 192 × 128 time correlated SPAD image sensor in 40-nm CMOS Technology," IEEE J. Solid-State Circuits PP(99), 1–10 (2019).
[84] A. Draaijer, R. Sanders, H. C. Gerritsen, Fluorescence Lifetime Imaging: A New Tool in Confocal Microscopy, pp. 491–504, Plenum Press, New York (1995).
[85] H. C. Gerritsen, R. Sanders, A. Draaijer, C. Ince, Y. K. Levine, “Fluorescence lifetime imaging of oxygen in cells," J. Fluoresc. 7, 11–16 (1997).
[86] H. C. Gerritsen, C. J. de Grauw, One- and Two-Photon Confocal Fluorescence Lifetime Imaging and Its Application, pp. 309–323, Springer, New York (2001).
[87] R. Sanders, A. Draaijer, H. C. Gerritsen, P. M. Houpt, Y. K. Levine, “Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy," Anal. Biochem. 227, 302–308 (1995).
[88] M. A. M. J. Van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. G. A. oude Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: Lifetime imaging of SYTO13 in healthy and apoptotic cells," Cytometry 47, 226–232 (2002).
[89] E. P. Buurman, R. Sanders, A. Draaijer, H. C. Gerritsen, J. J. F. van Veen, P. M. Houpt, Y. K. Levine, “Fluorescence lifetime imaging using a confocal laser scanning microscope," Scanning 14, 155–159 (1992).
[90] J. Syrtsma, J. M. Vroom, C. J. de Grauw, H. C. Gerritsen, “Time-gated fluorescence lifetime imaging and microvolume spectroscopy using twophoton excitation," J. Microsc. 191, 39–51 (1998).
[91] A. D. Scully, A. J. MacRobert, S. Botchway, P. O'Neill, A. W. Parker, R. B. Ostler, D. Phillips, “Development of a laser-based fluorescence microscope with subnanosecond time resolution," J. Fluoresc. 6, 119–125 (1996).
[92] A. D. Scully, R. B. Ostler, A. J. MacRobert, A. W. Parker, C. de Lara, P. O'Neill, D. Phillips, “Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminium and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts," Photochem. Photobiol. 68, 199–204 (1998).
[93] K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, J. D. Hares, “2D fluorescence liefetime imaging using a time-gated image intensifier," Opt. Commun. 135, 27–31 (1997).
[94] H. Sparks, F. G€orlitz, D. Kelly, S. C. Warren, P. A. Kellet, E. Garcia, A. K. L. Dymoke-Bradshaw, J. D. Hares, M. A. A. Neil, C. Dunsby, P. M. W. French, “Characterisation of new gated optical image intensifiers for fluorescence lifetime imaging," Rev. Sci. Instrum. 88, 013707 (2017).
[95] A. V. Agronskaia, L. Tertoolen, H. C. Gerritsen, “Fast fluorescence lifetime imaging of calcium in living cells," J. Biomed. Opt. 9, 1230–1237 (2004).
[96] A. V. Agronskaia, L. Tertoolen, H. C. Gerritsen, “High frame rate fluorescence lifetime imaging," J. Phys. D Appl. Phys. 36, 1655–1662 (2003).
[97] D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier," New J. Phys. 6, 180 (2004).
[98] A. Leray, S. Padilla-Parra, J. Roul, L. Heliot, M. Tramier, “Spatio-temporal quantification of FRET in living cells by fast time-domain FLIM: A comparative study of non-fitting methods," PloS One 8, e69335 (2013).
[99] A. C. Mitchell, J. E. Wall, J. G. Murray, C. G. Morgan, “Measurement of nanosecond timeresolved fluorescence with a directly gated interline CCD camera," J. Microsc. 206, 233–238 (2002).
[100] M. W. Seo, Y. Shirakawa, Y. Kawata, K. Kagawa, K. Yasutomi, S. Kawahito, “A time-resolved fourtap lock-in pixel CMOS image sensor for real-time fluorescence lifetime imaging microscopy," IEEE J. Solid-State Circuits 53, 2319–2330 (2018).
[101] A. C. Mitchell, J. E. Wall, J. G. Murray, C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: A new approach to timeresolved fluorescence imaging," J. Microsc. 206, 225–232 (2002).
[102] M. Raspe, K. M. Kedziora, B. van den Broek, Q. L. Zhao, S. de Jong, J. Herz, M. Mastop, J. Goedhart, T. W. J. Gadella, I. T. Young, K. Jalink, “siFLIM: Single-image frequency-domain FLIM provides fast and photon-e±cient lifetime data," Nat. Methods 13, 501–504 (2016).
[103] M. A. A. Neil, R. Juskaitas, T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905–1907 (1997).
[104] M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel. D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitas, T. Wilson, “Timedomain whole-field lifetime imaging with optical sectioning," J. Microsc. 203, 246–257 (2001).
[105] T. Hinsdale, C. Olsovsky, J. J. Rico-Jimenez, K. C. Maitland, J. A. Jo, B. H. Malik, “Optically sectioned wide-field fluorescence lifetime imaging microscopy enabled by structured illumination," Biomed. Opt. Exp. 8, 1455–1465 (2017).
[106] H. Choi, D. S. Tzeranis, J. W. Cha, P. Clemenceau, S. J. G. de Jong, L. K. van Geest, J. H. Moon, I. V. Yannas, P. T. C. So, “3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation," Opt. Exp. 20, 26219–26235 (2012).
[107] D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. A. Neil, P. M. W. French, “Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source," Opt. Lett. 30, 3353–3355 (2005).
[108] D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events," Opt. Exp. 15, 15656–15673 (2007).
[109] F. G€orlitz, D. S. Corcoran, H. Sparks, B. Leitinger, M. A. A. Neil, C. Dunsby, P. M. W. French, “Mapping molecular function to biological nanostructure: Combining structured illumination microscopy with fluorescence lifetime imaging (SIM + FLIM)," Photonics 4, 40 (2017).
[110] C. A. Mitchell, S. P. Poland, J. Seyforth, J. Nedbal, T. Gelot, T. Huq, G. Holst, R. D. Knight, S. M. Ameer-Beg, “Functional in vivo imaging using fluorescence lifetime light-sheet microscopy," Opt. Lett. 42, 1269–1272 (2017).
[111] K. Greger, M. J. Neetz, E. G. Reynaud, E. H. K. Stelzer, “Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio," Opt. Exp. 19, 20743–20750 (2011).
[112] P. Weber, S. Schickinger, M. Wagner, B. Angres, T. Bruns, H. Schneckenburger, “Monitoring of apoptosis in 3D cell cultures by FRET and light sheet fluorescence microscopy," Int. J. Mol. Sci. 16, 5375–5385 (2015).
[113] T. Funane, S. S. Hou, K. M. Zoltowska, S. J. van Veluw, O. Berezovska, A. T. N. Kumar, B. J. Bacskai, “Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples," Rev. Sci. Instrum. 89, 053705 (2018).
[114] P. M. Birch, L. Moore, X. F. Li, R. Phillips, R. Young, C. Chatwin, “A wide field fluorescence lifetime imaging system using a light sheet microscope," Proc. SPIE 9887, 98871O (2016).
[115] L. M. Hirvonen, W. Becker, J. Milnes, T. Conneely, S. Smietana, A. Le Marois, O. Jagutzki, K. Suhling, “Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector," Appl. Phys. Lett. 109, 071101 (2016).
[116] M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope," Appl. Phys. Lett. 73, 1769–1771 (1998).
[117] J. L. Qu, L. X. Liu, D. N. Chen, Z. Y. Lin, G. X. Xu, B. P. Guo, H. B. Niu, “Temporally and spectrally resolved sampling imaging with a specially designed streak camera," Opt. Lett. 31, 368–370 (2006).
[118] C. Biskup, T. Zimmer, K. Benndorf, “FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera," Nat. Biotechnol. 22, 220–224 (2004).
[119] R. V. Krishnan, H. Saitoh, H. Terada, V. E. Centonze, B. Herman, “Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera," Rev. Sci. Instrum. 74, 2714–2721 (2003).
[120] J. V. Thompson, J. D. Mason, H. T. Beier, J. N. Bixler, “High speed fluorescence imaging with compressed ultrafast photography," Proc. SPIE 10076, 1007613 (2017).
[121] S. Cheng, R. M. Cuenca, B. Liu, B. H. Malik, J. M. Jabbour, K. C. Maitland, J. Wright, Y. S. L. Cheng, J. A. Jo, “Handheld multispectral fluorescence lifetime imaging system for in vivo applications," Biomed. Opt. Exp. 5, 921–931 (2014).
[122] J. Ryu, U. Kang, J. Kim, H. Kim, J. H. Kang, H. Kim, D. K. Sohn, J. H. Jeong, H. Yoo, B. Gweon, “Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser," Biomed. Opt. Exp. 9, 3449–3463 (2018).
[123] Y. Won, S. Moon, W. Z. Yang, D. Kim, W. T. Han, D. Y. Kim, “High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method," Opt. Exp. 19, 3396–3405 (2011).
[124] B. Kim, B. Park, S. Lee, Y. Won, “GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method," Biomed. Opt. Exp. 7, 5055–5065 (2016).
[125] E. Gratton, B. B. Barbieri, “Multifrequency phase fluorometry using pulsed sources: Theory and applications," Spectroscopy 1, 28–36 (1986).
[126] J. R. Lakowicz, E. Gratton, H. Cherek, B. P. Maliwal, G. Laczko, “Determination of timeresolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry," J. Biol. Chem. 259, 10967–10972 (1984).
[127] P. T. C. So, T. French, W. M. Yu, K. M. Berland, C. Y. Dong, E. Gratton, “Time-resolved fluorescence microscopy using two-photon excitation," Bioimaging 3, 49–63 (1995).
[128] E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: Time-domain and frequency domain methods," J. Biomed. Opt. 8, 381–390 (2003).
[129] B. Valeur, Pulse and phase fluorometries: An objective comparison, Fluorescence Spectroscopy in Biology, M. Hof, R. Hutterer, V. Fidler, Eds., Springer Series on Fluorescence (Methods and Applications), Vol. 3, pp. 30–48, Springer, Berlin (2005).
[130] J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence lifetime imaging using an rf phase-sensitive camera," Rev. Sci. Instrum. 62, 1727–1734 (1991).
[131] A. D. Elder, C. F. Kaminski, J. H. Frank, “Φ2FLIM: A technique for alias-free frequency domain fluorescence lifetime imaging," Opt. Exp. 17, 23181–23203 (2009).
[132] A. H. A. Clayton,Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM)," Biophys. J. 83, 1631–1649 (2002).
[133] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition, p. 106, Springer, New York (2006).
[134] D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting, pp. 158–210, Academic Press, London (1984).
[135] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, The Art of Scientific Computing, Cambridge University Press, London (2007).
[136] P. Pande, J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method," IEEE Trans. Biomed. Eng. 58, 172–181 (2011).
[137] J. A. Jo, Q. Fang, T. Papaioannou, L. Marcu, “Novel ultra-fast deconvolution method for fluorescence lifetime imaging microscopy based on the Laguerre expansion technique," Proc. IEEE EMBS 2, 1271–1274 (2004).
[138] J. A. Jo, Q. Fang, L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique," IEEE J. Sel. Top. Quantum Electron. 11, 835–845 (2005).
[139] I. Isenberg, R. D. Dyson, “The analysis of fluorescence decay by a method of moments," Biophys. J. 9, 1337–1350 (1969).
[140] Z. Bay, “Calculation of decay times from coincidence experiments," Phys. Rev. 77, 419 (1950).
[141] W. Becker, S.Smietana, “Online-FLIM at 10 images per second," Proc. SPIE 10069, 1006916 (2017).
[142] L. L. Xu, Z. C. Wei, S. Q. Zeng, Z. L. Huang, “Quantifying the short lifetime with tcspc-flim: First moment versus fitting methods," J. Innov. Opt. Health Sci. 6, 1350030 (2013).
[143] B. Kim, M. Lee, B. Park, S. Lee, Y. Won, “Referencing technique for high-speed confocal fluorescence lifetime imaging microscopy (FLIM) based on analog mean-delay (AMD) method," Proc. SPIE 10068, 100681Z (2017).
[144] M. A. Digman, V. R. Caiolfa, M. Zamai, E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis," Biophys. J. 94, L14–L16 (2008).
[145] T. Luo, Y. Lu, S. X. Liu, D. Y. Lin, J. L. Qu, “Enhanced visualization of hematoxylin and eosin stained pathological characteristics by phasor approach," Anal. Chem. 89, 9224–9231 (2017).
[146] T. Luo, Y. Lu, S. X. Liu, D. Y. Lin, J. L. Qu, “Phasor-FLIM as a screening tool for the differential diagnosis of actinic keratosis, Bowen's disease and basal cell carcinoma," Anal. Chem. 89, 8104–8111 (2017).
[147] F. Fereidouni, K. Reitsma, H. C. Gerritsen, “High speed multispectral fluorescence lifetime imaging," Opt. Exp. 21, 11769–11782 (2013).
[148] R. J. Woods, S. Scypinski, L. J. C. Love, “Transient digitizer for the determination of microsecond luminescence lifetimes," Anal. Chem. 56, 1395–1400 (1984).
[149] R. M. Ballew, J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays," Anal. Chem. 61, 30–33 (1989).
[150] K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, N. H. Snow, “Error analysis of the rapid lifetime determination method for doubleexponential decays and new windowing schemes," Anal. Chem. 71, 947–952 (1999).
[151] Y. Liu, Y. Zhou, Y. L. Liu, “A rapid fluorescence lifetime image acquistion method based on timegated fluorescence lifetime imaging microscopy," 2014 2nd Int. Conf. Systems and Informatics, pp. 808–812, IEEE, New York (2014).
[152] D. D. U. Li, H. Q. Yu, Y. Chen, “Fast biexponential fluorescence lifetime imaging analysis methods," Opt. Lett. 40, 336–339 (2015).
[153] G. Wu, T. Nowotny, Y. L. Zhang, H. Q. Yu, D. D. U. Li, “Artificial neural network approaches for fluorescence lifetime imaging techniques," Opt. Lett. 41, 2561–2564 (2016).
[154] R. Cuenca, S. Cheng, B. Ahmed, K. C. Maitland, J. A. Jo, “Handheld optical system for fast and accurate in vivo fluorescence lifetime imaging (FLIM)," Proc. SPIE 10499, 104990U (2018).
[155] G. Nishimura, M. Tamura, “Artefacts in the analysis of temporal response functions measured by photon counting," Phys. Med. Biol. 50, 1327–1342 (2005).
[156] M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-suares fluorescence lifetime analysis of single molecules," Anal. Chem. 73, 2078–2086 (2001).
[157] A. Chessel, F. Waharte, J. Salamero, C. Kervrann, “A maximum likelihood method for lifetime estimation in photon counting-based fluorescence lifetime imaging microscopy," 21st European Signal Processing Conf. (EUSIPCO), pp. 1–5. IEEE (Institute of Electrical and Electronics Engineers), Marrakech (2013).
[158] A. Le Marois, S. Labouesse, K. Suhling, R. Heintzmann, “Noise-corrected principal component analysis of fluorescence lifetime imaging data," J. Biophotonics 10, 1124–1133 (2017).
[159] M. I. Rowley, A. C. C. Coolen, B. Vojnovic, P. R. Barber, “Robust Bayesian fluorescence lifetime estimation, decay model selection and instrument response determination for low-intensity FLIM imaging," PLoS One 11, e0158404 (2016).
[160] S. Yang, J. Lee, Y. Lee, M. Lee, B. U. Lee, “Estimation of multiexponential fluorescence decay parameters using compressive sensing," J. Biomed. Opt. 20, 096003 (2015).
[161] T. A. Smith, K. P. Ghiggino, “A review of the analysis of complex time-resolved fluorescence anisotropy data," Methods Appl. Fluoresc. 3, 022001 (2015).