• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551302 (2022)
Aiping LIU1, Guangjie CHEN2, Liang CHEN2, Xinbiao XU2, Yanlei ZHANG2, Qin WANG1, and Changling ZOU2、*
Author Affiliations
  • 1Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
  • 2CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China
  • show less
    DOI: 10.3788/gzxb20225105.0551302 Cite this Article
    Aiping LIU, Guangjie CHEN, Liang CHEN, Xinbiao XU, Yanlei ZHANG, Qin WANG, Changling ZOU. Advances in Integrated Photonic-atom Chips(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551302 Copy Citation Text show less
    References

    [1] N SCHOSSER, G REYMOND, I PROTSENKO et al. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature, 411, 1024-1027(2001).

    [2] D SCHRADER, I DOTSENKO, M KHUDAVERDYAN et al. Neutral atom quantum register. Physical Review Letters, 93, 150501(2004).

    [3] Y MIROSHNYCHENKO, W ALT, I DOTSENKO et al. An atom-sorting machine. Nature, 442, 151-151(2006).

    [4] Mo LI, Feiliang CHEN, Xiaojia LUO et al. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 70, 023701(2021).

    [5] Qiuzhi QU, Wenbing XIA, Bin WANG et al. Integrating design of a compact optical system for space laser cooling application. Acta Optica Sinica, 35, 0602003(2015).

    [6] X LUAN, J B BÉGUIN, A P BURGERS et al. The integration of photonic crystal waveguides with atom arrays in optical tweezers. Advanced Quantum Technologies, 3, 2000008(2020).

    [7] Weibang JI, Guiping WANG, Jie MA et al. Experimental study on fluorescence detection of cold Cs atoms using phase-lock detection technology. Acta Photonica Sinica, 37, 969-972(2008).

    [8] A M KAUFMAN, K K NI. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nature Physics, 17, 1324-1333(2021).

    [9] Tiancai ZHANG, Wei WU, Pengfei YANG et al. High-finesse micro-optical Fabry-Perot cavity and its applications in strongly coupled cavity quantum electrodynamics. Acta Optica Sinica, 41, 0127001(2021).

    [10] Lei YU, Shuangning YANG, Xueqing LIU et al. Ion beam etching assisted femtosecond laser machining to manufacture silicon carbide micro-optical components. Acta Photonica Sinica, 47, 1214003(2018).

    [11] Yuan DONG, Qize ZHONG, Yongjian ZHENG et al. Progress in wafer-level metasurface-based flat optics(Invited). Acta Photonica Sinica, 50, 1024002(2021).

    [12] Wen HE, Aiping LIU, Qin WANG. Detection of optical spin angular momentum with micro-nano helical groove structure. Acta Photonica Sinica, 48, 0427002(2019).

    [13] A LIU, M WU, R ZHUANG et al. On-chip generation of the reconfigurable orbital angular momentum with high order. Optics Express, 28, 17957-17965(2020).

    [14] J HONG, X ZHOU, R ZHUANG et al. Nanoparticle trapping by counter-surface plasmon polariton lens. Chinese Optics Letters, 20, 023601(2022).

    [15] P LODAHL, S MAHMOODIAN, S STOBBE et al. Chiral quantum optics. Nature, 541, 473-480(2017).

    [16] Y B OVCHINNIKOV, S V SHUL’GA, V I BALYKIN. An atomic trap based on evanescent light waves. Journal of Physics B: Atomic, Molecular and Optical Physics, 24, 3173(1991).

    [17] Y B OVCHINNKOV, I MANEK, R GRIMM. Surface trap for Cs atoms based on evanescent-wave cooling. Physical Review Letters, 79, 2225(1997).

    [18] L CHEN, C J HUANG, X B XU et al. Planar-integrated magneto-optical trap. Physical Review Applied, 17, 034031(2022).

    [19] C C NSHII, M VANGELEYN, J P COTTER et al. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies. Nature nanotechnology, 8, 321-324(2013).

    [20] A LIU, J LIU, W PENG et al. Multi-grating design for integrated single-atom trapping, manipulation, and readout. Physical Review A, 105, 053520(2022).

    [21] A LIU, L XU, X XU et al. Proposal for stable atom trapping on a GaN-on-Sapphire chip. arXiv preprint arXiv, 2205, 12153(2022).

    [22] K I LEE, J A KIM, H R NOH et al. Single-beam atom trap in a pyramidal and conical hollow mirror. Optics Letters, 21, 1177-1179(1996).

    [23] M VANGELEYN, P F GRIFFIN, E RIIS et al. Single-laser, one beam, tetrahedral magneto-optical trap. Optics Express, 17, 13601-13608(2009).

    [24] M VANGELEYN, P F GRIFFIN, E RIIS et al. Laser cooling with a single laser beam and a planar diffractor. Optics Letters, 35, 3453-3455(2010).

    [25] J LEE, J A GROVER, L A OROZCO et al. Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap. Journal of the Optical Society of America B, 30, 2869-2874(2013).

    [26] J P MCGILLIGAN, P F GRIFFIN, E RIIS et al. Phase-space properties of magneto-optical traps utilising micro-fabricated gratings. Optics Express, 23, 8948-8959(2015).

    [27] J P COTTER, J P MCGILLIGAN, P F GRIFFIN et al. Design and fabrication of diffractive atom chips for laser cooling and trapping. Applied Physics B, 122, 1-6(2016).

    [28] D S BARKER, E B NORRGARD, N N KLIMOV et al. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating. Physical Review Applied, 11, 064023(2019).

    [29] J DUAN, X LIU, Y ZHOU et al. High diffraction efficiency grating atom chip for magneto-optical trap. Optics Communications, 513, 128087(2022).

    [30] M WANG, C GUAN, L CHENG et al. Multicore fiber integrated beam shaping devices for long-range plasmonic trapping. Optics Express, 29, 28416-28426(2021).

    [31] K K MEHTA, C D BRUZEWICZ, R MCCONNELL et al. Integrated optical addressing of an ion qubit. Nature nanotechnology, 11, 1066-1070(2016).

    [32] R J NIFFENEGGER, J STUART, C SORACE-AGASKAR et al. Integrated multi-wavelength control of an ion qubit. Nature, 586, 538-542(2020).

    [33] E GRANADOS, C GRANADOS, R AHMED et al. Spectral synthesis of multimode lasers to the Fourier limit in integrated Fabry-Perot diamond resonators. Optica, 9, 317-324(2022).

    [34] X ZHOU, H TAMURA, T H CHANG et al. Subwavelength precision optical guiding for trapped atoms coupled to a nanophotonic resonator. arXiv preprint arXiv, 2111, 01119(2021).

    [35] S YU, J LU, V GINIS et al. On-chip optical tweezers based on freeform optics. Optica, 8, 409-414(2021).

    [36] T W HSU, W ZHU, T THIELE et al. Single atom trapping in a metasurface lens optical tweezer. arXiv preprint arXiv, 2110, 11559(2021).

    [37] J D THOMPSON, T G TIECKE, N P DE LEON et al. Coupling a single trapped atom to a nanoscale optical cavity. Science, 340, 1202-1205(2013).

    [38] D SCHRADER, S KUHR, W ALT et al. An optical conveyor belt for single neutral atoms. Applied Physics B, 73, 819-824(2001).

    [39] S KUHR, W ALT, D SCHRADER et al. Deterministic delivery of a single atom. Science, 293, 278-280(2001).

    [40] S P YU, J A MUNIZ, C L HUNG et al. Two-dimensional photonic crystals for engineering atom-light interactions. Proceedings of the National Academy of Sciences, 116, 12743-12751(2019).

    [41] A P BURGERS, L S PENG, J A MUNIZ et al. Clocked atom delivery to a photonic crystal waveguide. Proceedings of the National Academy of Sciences, 116, 456-465(2019).

    [42] M E KIM, T H CHANG, B M FIELDS et al. Trapping single atoms on a nanophotonic circuit with configurable tweezer lattices. Nature Communications, 10, 1-8(2019).

    [43] J BURES, R GHOSH. Power density of the evanescent field in the vicinity of a tapered fiber. Journal of the Optical Society of America A, 16, 1992-1996(1999).

    [44] F LE KIEN, V I BALYKIN, K HAKUTA. Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber. Physical Review A, 70, 063403(2004).

    [45] J BERROIR, A BOUSCAL, A URVOY et al. Nanotrappy: An open-source versatile package for cold-atom trapping close to nanostructures. Physical Review Research, 4, 013079(2022).

    [46] K P NAYAK, P N MELENTIEV, M MORINAGA et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Optics Express, 15, 5431-5438(2007).

    [47] F LE KIEN, K HAKUTA. Spontaneous radiative decay of translational levels of an atom near a dielectric surface. Physical Review A, 75, 013423(2007).

    [48] L TONG, R R GATTASS, J B ASHCOM et al. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816-819(2003).

    [49] M BOUSTIMI, J BAUDON, P CANDORI et al. van der Waals interaction between an atom and a metallic nanowire. Physical Review B, 65, 155402(2002).

    [50] A D MCLACHLAN. Van der Waals forces between an atom and a surface. Molecular Physics, 7, 381-388(1964).

    [51] J FU, X YIN, N LI et al. Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber. Chinese Optics Letters, 6, 112-115(2008).

    [52] E VETSCH, D REITZ, G SAGUÉ et al. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Physical Review Letters, 104, 203603(2010).

    [53] S T DAWKINS, R MITSCH, D REITZ et al. Dispersive optical interface based on nanofiber-trapped atoms. Physical Review Letters, 107, 243601(2011).

    [54] T H STIEVATER, D A KOZAK, M W PRUESSNER et al. Modal characterization of nanophotonic waveguides for atom trapping. Optical Materials Express, 6, 3826-3837(2016).

    [55] A H BARNETT, S P SMITH, M OLSHANII et al. Substrate-based atom waveguide using guided two-color evanescent light fields. Physical Review A, 61, 023608(2000).

    [56] JR J P BURKE, S T CHU, G W BRYANT et al. Designing neutral-atom nanotraps with integrated optical waveguides. Physical Review A, 65, 043411(2002).

    [57] Y MENG, J LEE, M DAGENAIS et al. A nanowaveguide platform for collective atom-light interaction. Applied Physics Letters, 107, 091110(2015).

    [58] C L HUNG, S M MEENEHAN, D E CHANG et al. Trapped atoms in one-dimensional photonic crystals. New Journal of Physics, 15, 083026(2013).

    [59] A GOBAN, C L HUNG, S P YU et al. Atom–light interactions in photonic crystals. Nature Communications, 5, 1-9(2014).

    [60] A GONZÁLEZ-TUDELA, C L HUNG, D E CHANG et al. Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals. Nature Photonics, 9, 320-325(2015).

    [61] M GULLANS, T G TIECKE, D E CHANG et al. Nanoplasmonic lattices for ultracold atoms. Physical Review Letters, 109, 235309(2012).

    [62] F LE KIEN, S D GUPTA, V I BALYKIN et al. Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes. Physical Review A, 72, 032509(2005).

    [63] F LE KIEN, V I BALYKIN, K HAKUTA. Scattering of an evanescent light field by a single cesium atom near a nanofiber. Physical Review A, 73, 013819(2006).

    [64] F LE KIEN, S D GUPTA, K P NAYAK et al. Nanofiber-mediated radiative transfer between two distant atoms. Physical Review A, 72, 063815(2005).

    [65] D REITZ, C SAYRIN, R MITSCH et al. Coherence properties of nanofiber-trapped cesium atoms. Physical Review Letters, 110, 243603(2013).

    [66] C SAYRIN, C JUNGE, R MITSCH et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Physical Review X, 5, 041036(2015).

    [67] C SAYRIN, C CLAUSEN, B ALBRECHT et al. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica, 2, 353-356(2015).

    [68] Y MENG, C LIEDL, S PUCHER et al. Imaging and localizing individual atoms interfaced with a nanophotonic waveguide. Physical Review Letters, 125, 053603(2020).

    [69] A S PRASAD, J HINNEY, S MAHMOODIAN et al. Correlating photons using the collective nonlinear response of atoms weakly coupled to an optical mode. Nature Photonics, 14, 719-722(2020).

    [70] J HINNEY, A S PRASAD, S MAHMOODIAN et al. Unraveling two-photon entanglement via the squeezing spectrum of light traveling through nanofiber-coupled atoms. Physical Review Letters, 127, 123602(2021).

    [71] D HÜMMER, O ROMERO-ISART, A RAUSCHENBEUTEL et al. Probing surface-bound atoms with quantum nanophotonics. Physical Review Letters, 126, 163601(2021).

    [72] R PENNETTA, M BLAHA, A JOHNSON et al. Collective radiative dynamics of an ensemble of cold atoms coupled to an optical waveguide. Physical Review Letters, 128, 073601(2022).

    [73] S PUCHER, C LIEDL, S JIN et al. Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light. Nature Photonics, 1-4(2022).

    [74] N V CORZO, B GOURAUD, A CHANDRA et al. Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Physical Review Letters, 117, 133603(2016).

    [75] N V CORZO, J RASKOP, A CHANDRA et al. Waveguide-coupled single collective excitation of atomic arrays. Nature, 566, 359-362(2019).

    [76] Genzhu WU, Xiaohua WANG, Yuxia WANG et al. Spontaneous emission characteristics of photonic quantum wells in slab waveguides. Acta Photonica Sinica, 29, 993-997(2000).

    [77] Bin ZHANG, Lei WANG, Yuechen JIA et al. Research advances of optical waveguides by light-manipulation based femtosecond laser writing(Invited). Acta Photonica Sinica, 51, 0151106(2022).

    [78] B KANNAN, M J RUCKRIEGEL, D L CAMPBELL et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature, 583, 775-779(2020).

    [79] T ÐORĐEVIĆ, P SAMUTPRAPHOOT, P L OCOLA et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science, 373, 1511-1514(2021).

    [80] J S FORESI, P R VILLENEUVE, J FERRERA et al. Photonic-bandgap microcavities in optical waveguides. Nature, 390, 143-145(1997).

    [81] A GOBAN, C L HUNG, J D HOOD et al. Superradiance for atoms trapped along a photonic crystal waveguide. Physical Review Letters, 115, 063601(2015).

    [82] J S DOUGLAS, H HABIBIAN, C L HUNG et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nature Photonics, 9, 326-331(2015).

    [83] J D HOOD, A GOBAN, A ASENJO GARCIA et al. Atom–atom interactions around the band edge of a photonic crystal waveguide. Proceedings of the National Academy of Sciences, 113, 10507-10512(2016).

    [84] T G TIECKE, J D THOMPSON, N P DE LEON et al. Nanophotonic quantum phase switch with a single atom. Nature, 508, 241-244(2014).

    [85] P SAMUTPRAPHOOT, T ĐORĐEVIĆ, P L OCOLA et al. Strong coupling of two individually controlled atoms via a nanophotonic cavity. Physical Review Letters, 124, 063602(2020).

    [86] T AOKI, B DAYAN, E WILCUT et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 443, 671-674(2006).

    [87] C JUNGE, D O’SHEA, J VOLZ et al. Strong coupling between single atoms and nontransversal photons. Physical Review Letters, 110, 213604(2013).

    [88] O BECHLER, A BORNE, S ROSENBLUM et al. A passive photon–atom qubit swap operation. Nature Physics, 14, 996-1000(2018).

    [89] H MABUCHI, H J KIMBLE. Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator. Optics Letters, 19, 749-751(1994).

    [90] D W VERNOOY, H J KIMBLE. Quantum structure and dynamics for atom galleries. Physical Review A, 55, 1239(1997).

    [91] J VOLZ, M SCHEUCHER, C JUNGE et al. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nature Photonics, 8, 965-970(2014).

    [92] M SCHEUCHER, A HILICO, E WILL et al. Quantum optical circulator controlled by a single chirally coupled atom. Science, 354, 1577-1580(2016).

    [93] E WILL, L MASTERS, A RAUSCHENBEUTEL et al. Coupling a single trapped atom to a whispering-gallery-mode microresonator. Physical Review Letters, 126, 233602(2021).

    [94] Lilong MA, Minchao XIE, OU Wei et al. Fabrication and lasing properties of silicon-based GaN microcavities(Invited). Acta Photonica Sinica, 51, 0251204(2022).

    [95] T H CHANG, B M FIELDS, M E KIM et al. Microring resonators on a suspended membrane circuit for atom-light interactions. Optica, 6, 1203-1210(2019).

    [96] T H CHANG, X ZHOU, M ZHU et al. Efficiently coupled microring circuit for on-chip cavity QED with trapped atoms. Applied Physics Letters, 117, 174001(2020).

    [97] E EDREI, N COHEN, E GERSTEL et al. Chip-scale atomic wave-meter enabled by machine learning. Science Advances, 8, eabn3391(2022).

    [98] R ZEKTZER, N MAZURSKI, Y BARASH. Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing. Nature Photonics, 15, 772-779(2021).

    Aiping LIU, Guangjie CHEN, Liang CHEN, Xinbiao XU, Yanlei ZHANG, Qin WANG, Changling ZOU. Advances in Integrated Photonic-atom Chips(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551302
    Download Citation