• Journal of Semiconductors
  • Vol. 46, Issue 2, 022401 (2025)
Liubin Yang1,2, Xiushuo Gu1,2, Min Zhou2, Jianya Zhang4..., Yonglin Huang1,* and Yukun Zhao2,3,**|Show fewer author(s)
Author Affiliations
  • 1College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
  • 3School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
  • 4Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
  • show less
    DOI: 10.1088/1674-4926/24050037 Cite this Article
    Liubin Yang, Xiushuo Gu, Min Zhou, Jianya Zhang, Yonglin Huang, Yukun Zhao. Deep-UV-photo-excited synaptic Ga2O3 nano-device with low-energy consumption for neuromorphic computing[J]. Journal of Semiconductors, 2025, 46(2): 022401 Copy Citation Text show less
    References

    [1] T J Lee, S K Kim, T Y Seong. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci Rep, 10, 5761(2020).

    [2] J Q Wang, S S Mao, S H Zhu et al. Biomemristors-based synaptic devices for artificial intelligence applications. Org Electron, 106, 106540(2022).

    [3] Z Y Feng, J R Yu, Y C Wei et al. Tribo-ferro-optoelectronic neuromorphic transistor of α-In2Se3. Brain-X, 1, e24(2023).

    [4] L K Song, P Y Liu, J F Pei et al. Spiking neurons with neural dynamics implemented using stochastic memristors. Adv Electron Mater, 10, 2300564(2024).

    [5] B B Tian, Z Z Xie, L Q Chen et al. Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Exploration, 3, 20220126(2023).

    [6] S Jiang, S Nie, Y He et al. Emerging synaptic devices: From two-terminal memristors to multiterminal neuromorphic transistors. Mater Today Nano, 8, 100059(2019).

    [7] J M Shainline, S M Buckley, R P Mirin et al. Superconducting optoelectronic circuits for neuromorphic computing. Phys Rev Applied, 7, 034013(2017).

    [8] D A Drachman. Do we have brain to spare. Neurology, 64, 2004(2005).

    [9] P Monalisha, S Y Li, S G Bhat et al. Synaptic behavior of Fe3O4-based artificial synapse by electrolyte gating for neuromorphic computing. J Appl Phys, 133, 084901(2023).

    [10] Y C Zhang, L Liu, B Tu et al. An artificial synapse based on molecular junctions. Nat Commun, 14, 247(2023).

    [11] J S Zhao, S T Zheng, L W Zhou et al. An artificial optoelectronic synapse based on MoOx film. Nanotechnology, 34, 145201(2023).

    [12] J Y Kwon, J E Kim, J S Kim et al. Artificial sensory system based on memristive devices. Exploration, 4, 20220162(2024).

    [13] S Zhang, W T Xu. All-printed ultra-flexible organic nanowire artificial synapses. J Mater Chem C, 8, 11138(2020).

    [14] H Hirayama. Research status and prospects of deep ultraviolet devices. J Semicond, 40, 120301(2019).

    [15] T He, X D Zhang, X Y Ding et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity. Adv Opt Mater, 7, 1801653(2019).

    [16] Y Yoon, Y Kim, W S Hwang et al. Biological UV photoreceptors-inspired Sn-doped polycrystalline β-Ga2O3 optoelectronic synaptic phototransistor for neuromorphic computing. Adv Electron Mater, 9, 2300098(2023).

    [17] X H Lin, H T Long, S Ke et al. Indium-gallium-zinc-oxide-based photoelectric neuromorphic transistors for spiking morse coding. Chin Phys Lett, 39, 068501(2022).

    [18] K Sato, Y Hayashi, N Masaoka et al. High-temperature operation of gallium oxide memristors up to 600 K. Sci Rep, 13, 1261(2023).

    [19] S P Wang, C L He, J Tang et al. Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor. Chin Phys B, 28, 017304(2019).

    [20] R F Zhou, W X Zhang, H F Cong et al. Metal oxide semiconductor nanowires enabled air-stable ultraviolet-driven synaptic transistors for artificial vision. Mat Sci Semicon Proc, 158, 107344(2023).

    [21] C H Huang, C Y Wu, Y F Lin et al. Wet-etching-boosted charge storage in 1D nitride-based systems for imitating biological synaptic behaviors. Adv Funct Mater, 33, 2306030(2023).

    [22] X Chen, B K Chen, B Jiang et al. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv Funct Mater, 33, 2208807(2023).

    [23] F Huang, F E Fang, Y Zheng et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res, 16, 1304(2023).

    [24] J Li, S K Wen, D L Jiang et al. Fully solution-processed InSnO/HfGdOx thin-film transistor for light-stimulated artificial synapse. Flex Print Electron, 7, 014006(2022).

    [25] Y Q Wang, W X Wang, C W Zhang et al. A digital‒analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl Electron Mater, 4, 3525(2022).

    [26] T Guo, B Z Zhang, X Y Wang et al. Broadband optoelectronic synapse enables compact monolithic neuromorphic machine vision for information processing. Adv Funct Mater, 33, 2303879(2023).

    [27] J X Li, P Dwivedi, K S Kumar et al. Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv Electron Mater, 7, 2000535(2021).

    [28] J S Liu, Z J Li, C H Jia et al. Artificial synapse based on 1, 4-diphenylbutadiyne with femtojoule energy consumption. Phys Chem Chem Phys, 25, 5453(2023).

    [29] J Y Wang, C J Wan, Q Wan. Dual-gate IGZO-based neuromorphic transistors with stacked Al2O3/chitosan gate dielectrics. J Inorg Mater, 38, 445(2023).

    [30] Z J Yang, L Wang, W Shi et al. Back to homogeneous computing: A tightly-coupled neuromorphic processor with neuromorphic ISA. IEEE Trans Parallel Distrib Syst, 34, 2910(2023).

    [31] B Sun, T Guo, G D Zhou et al. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater Today Phys, 18, 100393(2021).

    [32] K M Al-khamis, R M Mahfouz, A A Al-warthan et al. Synthesis and characterization of gallium oxide nanoparticles. Arab J Chem, 2, 73(2009).

    [33] T X Kang, D M Yang, F Q Du et al. Using magnesium reduction strategy to produce black Ga2O3 with variable oxygen vacancies for photocatalytic applications. J Alloys Compd, 926, 166887(2022).

    [34] C Wu, F Wu, C Ma et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater Today Phys, 23, 100643(2022).

    [35] M Jiang, J Y Zhang, W X Yang et al. Flexible self-powered photoelectrochemical photodetector with ultrahigh detectivity, ultraviolet/visible reject ratio, stability, and a quasi-invisible functionality based on lift-off vertical (Al, Ga)N nanowires. Adv Mater Interfaces, 9, 2200028(2022).

    [36] J Y Zhang, B Jiao, J F Dai et al. Enhance the responsivity and response speed of self-powered ultraviolet photodetector by GaN/CsPbBr3 core-shell nanowire heterojunction and hydrogel. Nano Energy, 100, 107437(2022).

    [37] U Das, P Sarkar, B Paul et al. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl Phys Lett, 118, 182103(2021).

    [38] S Yuan, Z Feng, B Qiu et al. Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing. Sci China Mater, 66, 3238(2023).

    [39] S B Hofer, T D Mrsic-Flogel, T Bonhoeffer et al. Experience leaves a lasting structural trace in cortical circuits. Nature, 457, 313(2009).

    [40] X B Yan, J J Wang, M L Zhao et al. Artificial electronic synapse characteristics of a Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl Phys Lett, 113, 013503(2018).

    [41] S Zhang, L Yang, C P Jiang et al. Digitally aligned ZnO nanowire array based synaptic transistors with intrinsically controlled plasticity for short-term computation and long-term memory. Nanoscale, 13, 19190(2021).

    [42] G Liu, C Wang, W B Zhang et al. Organic biomimicking memristor for information storage and processing applications. Adv Electron Mater, 2, 1500298(2016).

    [43] H X Qi, Y Wu. Synaptic plasticity of TiO2 nanowire transistor. Microelectron Int, 37, 125(2020).

    [44] R Z Li, Y B Dong, F S Qian et al. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX, 4, 4(2023).

    [45] K He, Y Q Liu, J C Yu et al. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano, 16, 9691(2022).

    [46] J H Kim, H J Lee, H J Kim et al. Oxide semiconductor memristor-based optoelectronic synaptic devices with quaternary memory storage. Adv Electron Mater, 2300863(2024).

    [47] P S Xie, Y L Huang, W Wang et al. Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses. Nano Energy, 91, 106654(2022).

    Liubin Yang, Xiushuo Gu, Min Zhou, Jianya Zhang, Yonglin Huang, Yukun Zhao. Deep-UV-photo-excited synaptic Ga2O3 nano-device with low-energy consumption for neuromorphic computing[J]. Journal of Semiconductors, 2025, 46(2): 022401
    Download Citation