• Photonics Research
  • Vol. 10, Issue 9, 2178 (2022)
Peihang Li1, Peng Yu2, Jiachen Sun1, Zhimin Jing1, Jiang Wu1, Lucas V. Besteiro3, Roberto Caputo4, Arup Neogi1、7、*, Hongxing Xu5, and Zhiming Wang1、6、8、*
Author Affiliations
  • 1Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
  • 3CINBIO, Universidade de Vigo, Vigo 36310, Spain
  • 4Physics Department, University of Calabria, Rende I-87036, Italy
  • 5School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan 430072, China
  • 6Institute for Advanced Study, Chengdu University, Chengdu 610106, China
  • 7e-mail: arup@uestc.edu.cn
  • 8e-mail: zhmwang@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.463901 Cite this Article Set citation alerts
    Peihang Li, Peng Yu, Jiachen Sun, Zhimin Jing, Jiang Wu, Lucas V. Besteiro, Roberto Caputo, Arup Neogi, Hongxing Xu, Zhiming Wang. Directional radiation enhancement of nanowire quantum dots based on line-array plasmonic antenna coupling[J]. Photonics Research, 2022, 10(9): 2178 Copy Citation Text show less
    References

    [1] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [2] I. Aharonovich, D. Englund, M. Toth. Solid-state single-photon emitters. Nat. Photonics, 10, 631-641(2016).

    [3] P. Yu, Z. Li, T. Wu, Y.-T. Wang, X. Tong, C.-F. Li, Z. Wang, S.-H. Wei, Y. Zhang, H. Liu, L. Fu, Y. Zhang, J. Wu, H. H. Tan, C. Jagadish, Z. M. Wang. Nanowire quantum dot surface engineering for high temperature single photon emission. ACS Nano, 13, 13492-13500(2019).

    [4] C. Wu, S. Kumar, Y. Kan, D. Komisar, Z. Wang, S. I. Bozhevolnyi, F. Ding. Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv., 8, eabk3075(2021).

    [5] F. Ripka, H. Kübler, R. Löw, T. Pfau. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science, 362, 446-449(2018).

    [6] N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Electrically driven single-photon source at room temperature in diamond. Nat. Photonics, 6, 299-303(2012).

    [7] X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin. Carbon nanotubes as emerging quantum-light sources. Nat. Mater., 17, 663-670(2018).

    [8] M. Toth, I. Aharonovich. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem., 70, 123-142(2019).

    [9] C. Santori, D. Fattal, J. Vučković, G. S. Solomon, Y. Yamamoto. Indistinguishable photons from a single-photon device. Nature, 419, 594-597(2002).

    [10] S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, M. Kamp. Two-photon interference from a quantum dot microcavity: persistent pure dephasing and suppression of time jitter. Phys. Rev. B, 91, 075413(2015).

    [11] T. Grange, N. Somaschi, C. Antón, L. De Santis, G. Coppola, V. Giesz, A. Lemaître, I. Sagnes, A. Auffèves, P. Senellart. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett., 118, 253602(2017).

    [12] T. B. Hoang, G. M. Akselrod, M. H. Mikkelsen. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett., 16, 270-275(2016).

    [13] A. R. Dhawan, C. Belacel, J. U. Esparza-Villa, M. Nasilowski, Z. Wang, C. Schwob, J.-P. Hugonin, L. Coolen, B. Dubertret, P. Senellart, A. Maître. Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas. Light Sci. Appl., 9, 33(2020).

    [14] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).

    [15] M. Moczała-Dusanowska, Ł. Dusanowski, S. Gerhardt, Y. M. He, M. Reindl, A. Rastelli, R. Trotta, N. Gregersen, S. Höfling, C. Schneider. Strain-tunable single-photon source based on a quantum dot–micropillar system. ACS Photonics, 6, 2025-2031(2019).

    [16] G. Yang, Q. Shen, Y. Niu, H. Wei, B. Bai, M. H. Mikkelsen, H. B. Sun. Unidirectional, ultrafast, and bright spontaneous emission source enabled by a hybrid plasmonic nanoantenna. Laser Photonics Rev., 14, 1900213(2020).

    [17] H. Abudayyeh, B. Lubotzky, A. Blake, J. Wang, S. Majumder, Z. Hu, Y. Kim, H. Htoon, R. Bose, A. V. Malko, J. A. Hollingsworth, R. Rapaport. Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photonics, 6, 036109(2021).

    [18] F. Huang, M. Li, F. Chen, H. Zhang, Q. Li. Gap surface plasmon and plasmonic waveguide based single photon source. 17th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 43-44(2017).

    [19] H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, Y. Gu. High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon. Sci. Rep., 8, 11244(2018).

    [20] S. Hepp, F. Hornung, S. Bauer, E. Hesselmeier, X. Yuan, M. Jetter, S. L. Portalupi, A. Rastelli, P. Michler. Purcell-enhanced single-photon emission from a strain-tunable quantum dot in a cavity-waveguide device. Appl. Phys. Lett., 117, 254002(2020).

    [21] X. Huang, X. Tong, Z. Wang. Rational design of colloidal core/shell quantum dots for optoelectronic applications. J. Electron. Sci. Technol., 18, 100018(2020).

    [22] V. Krivenkov, P. Samokhvalov, I. Nabiev, Y. P. Rakovich. Synergy of excitation enhancement and the Purcell effect for strong photoluminescence enhancement in a thin-film hybrid structure based on quantum dots and plasmon nanoparticles. J. Phys. Chem. Lett., 11, 8018-8025(2020).

    [23] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [24] A. Neogi, H. Morkoc, T. Kuroda, A. Tackeuchi, T. Kawazoe, M. Ohtsu. Exciton localization in vertically and laterally coupled GaN/AlN quantum dots. Nano Lett., 5, 213-217(2005).

    [25] M. S. Skolnick, D. J. Mowbray. Self-assembled semiconductor quantum dots: fundamental physics and device applications. Annu. Rev. Mater. Res., 34, 181-218(2004).

    [26] A. Neogi, B. Gorman, H. Morkoç, T. Kawazoe, M. Ohtsu. Near-field optical spectroscopy and microscopy of self-assembled GaN/AlN nanostructures. Appl. Phys. Lett., 86, 043103(2005).

    [27] P. Yu, J. Wu, L. Gao, H. Liu, Z. Wang. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy. Solar Energy Mater. Sol. Cells, 161, 377-381(2017).

    [28] M. Pfeiffer, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, M. Lippitz, K. Lindfors. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas. Sci. Rep., 8, 3415(2018).

    [29] J. Lee, A. O. Govorov, J. Dulka, N. A. Kotov. Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett., 4, 2323-2330(2004).

    [30] J. Lee, P. Hernandez, J. Lee, A. O. Govorov, N. A. Kotov. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater., 6, 291-295(2007).

    [31] B. Wang, P. Yu, W. Wang, X. Zhang, H.-C. Kuo, H. Xu, Z. M. Wang. High-Q plasmonic resonances: fundamentals and applications. Adv. Opt. Mater., 9, 2001520(2021).

    [32] G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. Bakkers, L. P. Kouwenhoven, V. Zwiller. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides. Appl. Phys. Lett., 100, 121106(2012).

    [33] P. Li, P. Yu, W. Wang, F. Lin, H. Xu, Z. Wang. Efficient single-photon emission from a nanowire quantum dot coupled to a plasmonic nanoantenna. J. Lightwave Technol., 39, 7495-7501(2021).

    [34] S. Kolatschek, C. Nawrath, S. Bauer, J. S. Huang, J. Fischer, R. Sittig, M. Jetter, S. L. Portalupi, P. Michler. Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating. Nano Lett., 21, 7740-7745(2021).

    [35] Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, X. Zhu. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett., 11, 1676-1680(2011).

    [36] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).

    [37] R. Chance, A. Prock, R. Silbey. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys., 37, 1-65(1978).

    [38] P. Bharadwaj, L. Novotny. Spectral dependence of single molecule fluorescence enhancement. Opt. Express, 15, 14266-14274(2007).

    [39] N. Mukhundhan, A. Ajay, J. Bissinger, J. J. Finley, G. Koblmüller. Purcell enhanced coupling of nanowire quantum emitters to silicon photonic waveguides. Opt. Express, 29, 43068-43081(2021).

    [40] B. Conrad, A. Lochtefeld, A. Gerger, A. Barnett, I. Perez-Wurfl. Optical characterisation of III-V alloys grown on Si by spectroscopic ellipsometry. Solar Energy Mater. Sol. Cells, 162, 7-12(2017).

    [41] I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard. Solid-state single photon sources: the nanowire antenna. Opt. Express, 17, 2095-2110(2009).

    [42] X. Guo, Y. B. Ying, L. M. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res., 47, 656-666(2014).

    [43] J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett., 106, 103601(2011).

    [44] H. Matzner, M. Milgrom, S. Shtrikman. Magnetoelectric symmetry and electromagnetic radiation. Ferroelectrics, 161, 213-219(1994).

    [45] M. Moczala-Dusanowska, L. Dusanowski, O. Iff, T. Huber, S. Kuhn, T. Czyszanowski, C. Schneider, S. Hoefling. Strain-tunable single-photon source based on a circular Bragg grating cavity with embedded quantum dots. ACS Photonics, 7, 3474-3480(2020).

    [46] G. Zhang, S. Jia, Y. Gu, J. Chen. Brightening and guiding single-photon emission by plasmonic waveguide–slit structures on a metallic substrate. Laser Photonics Rev., 13, 1900025(2019).

    [47] C. C. Chiang, S. I. Bogdanov, O. A. Makarova, X. Xu, S. Saha, D. Shah, Z. O. Martin, D. Wang, A. S. Lagutchev, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Chip-compatible quantum plasmonic launcher. Adv. Opt. Mater., 8, 2000889(2020).

    [48] B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J. P. Hugonin, F. Marquier, J. J. Greffet, B. Dubertret. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol., 10, 170-175(2015).

    [49] W. Wei, X. Yan, J. Liu, B. Shen, W. Luo, X. Ma, X. Zhang. Enhancement of single-photon emission rate from InGaAs/GaAs quantum-dot/nanowire heterostructure by wire-groove nanocavity. Nanomaterials, 9, 671(2019).

    [50] D. Magde, R. Wong, P. G. Seybold. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol., 75, 327-334(2002).

    [51] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).

    [52] M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics, 9, 781-799(2014).

    [53] J. McBride, J. Treadway, L. Feldman, S. J. Pennycook, S. J. Rosenthal. Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett., 6, 1496-1501(2006).

    [54] A. M. Smith, A. M. Mohs, S. Nie. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol., 4, 56-63(2009).

    [55] T. Frecker, D. Bailey, X. Arzeta-Ferrer, J. McBride, S. J. Rosenthal. Review—quantum dots and their application in lighting, displays, and biology. ECS J. Solid State Sci. Technol., 5, R3019-R3031(2016).

    Peihang Li, Peng Yu, Jiachen Sun, Zhimin Jing, Jiang Wu, Lucas V. Besteiro, Roberto Caputo, Arup Neogi, Hongxing Xu, Zhiming Wang. Directional radiation enhancement of nanowire quantum dots based on line-array plasmonic antenna coupling[J]. Photonics Research, 2022, 10(9): 2178
    Download Citation