
- Photonics Research
- Vol. 10, Issue 9, 2178 (2022)
Abstract
1. INTRODUCTION
Quantum optical technologies such as quantum communication, quantum computing, quantum networks, or boson sampling [1,2] require single-photon emitters with strong coherence as observed in quantum dots (QDs) [3,4], single-atom [5], solid defects [6], carbon nanotubes [7], or two-dimensional hosts [8]. QDs, due to their zero-dimensional density of states, can exhibit stable and narrowband emission with wide spectral tunability and represent one of the most promising material platforms. However, in the visible and near-infrared ranges, the lifetime of free-space radiative recombination is long; namely, the spontaneous emission (SE) rate of single QDs is still too low. It influences the internal quantum efficiency of an emitter, which is low due to the reduced electron density of states and further hinders the higher rate of photon generation. A possible alternative is to modify the electromagnetic environment around the QDs with an increased local density of optical states (LDOS) to significantly augment the SE rate of the emitter via the Purcell effect. This also reduces the effect of decoherence on single-photon sources (SPEs) and has been used as a tool to generate highly indistinguishable single photons [9–11]. In this way, the exploitation of extremely small mode volume of plasmonic nanoantennas has been used to lower the SE lifetimes by several orders of magnitude, corresponding to a hundred-fold increase in the spontaneous emission rate
However, to date, most research has focused on colloidal QDs [21], defect emitters, or molecules because of their small size in a few nanometers, allowing them to be easily placed in plasmonic nanogap with confined mode volumes [12,17,22]. For example, by using interfacial capillary forces, several colloidal QDs can be located within the gap of a bowtie antenna [23]. However, more than a single QD in the gap generates multiple photons, leading to an inhomogeneous linewidth broadening, resulting in the multimode generation and rendering it ineffective for “single-photon” emission. Moreover, colloidal quantum dots are not ideal due to surface defects and interface phonons affecting the spontaneous emission rate via the non-radiative recombination process. Epitaxially grown III-V self-assembled semiconductor QDs have single-photon emission properties through crystalline quality, size control, and indistinguishability [2,24], which can ensure that there is only one QD in a device. However, the site control of QDs grown in a semiconductor matrix by self-assembly techniques is challenging. QDs usually nucleated randomly on the substrate through self-assembly [25,26]. This complicates fabricating III-V QDs coupled to plasmonic nanoantennas [27]. Therefore, the main challenge is that the self-assembled QDs must be deposited with an extremely high spatial accuracy to couple them with the plasmonic nanostructure [28].
Nanowire quantum dots (NWQDs) can overcome these conventional challenges. Size-controllable NWQDs can be grown without catalysts [29]. The QD emitters composed of III-V semiconductors can be embedded in nanowires with atomically sharp heterostructure interfaces and enable bright emission with high quantum yield due to limited non-radiative relaxation [3]. A single QD or nanodisk can be embedded epitaxially within the nanowire structure in this configuration. It enables site-controlled localization of the QD or nanoparticle heterostructure within a nanowire-based waveguide that can be fabricated to realize SPE emission sources [30]. The nanowire further provides a cylindrical dielectric waveguide to enable coupling to the plasmonic antenna while confining the photons emitted from the QD along the length of the wire and improving its directivity. However, the Purcell enhancement factor of an NWQD is limited (
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
The mechanism of plasmonic-enhanced light emission through the NWQD along the direction of the waveguide by coupling it to plasmonic antennas was discussed in previous work [33]. In this work, we focus on introducing a new mechanism to enhance the spontaneous emission of a single photon in the vertical direction for on-chip photonic integrated circuits. A line-array plasmonic antenna with specific periodicity can be designed to be coupled to an individual QD emission within a nanowire for enhanced spontaneous emission and to improve the device’s vertical directionality. This work proposes two line-array plasmonic antenna-coupled NWQD SPE designs based on bowtie nanoantenna and finite element method modeling. The line-array plasmonic NWQD device is considered to be fabricated on a
2. MODULE METHODOLOGY
The NWQD consists of GaAsP nanowires/GaAs (QD) one-dimensional heterostructures, as shown in Fig. 1(a) [3]. When the plasmonic antenna is coupled to the NWQD, the SE of the QD is enhanced due to the increased local electronic density of states in the presence of enhanced photonic density of states. Inspired by this, we propose two NWQD–bowtie antenna line-array-coupled device configurations, as shown in Figs. 1(b) and 1(c). The QD positions are marked by red arrows, enabling the coupling of one QD and three bowtie plasmonic antennas. In the AS [Fig. 1(b)], three pairs of bowtie plasmonic antennas with an air superstrate are equally spaced along the NWQD and placed on a
Figure 1.(a) Schematic of the NWQD (left); schematic energy band diagram for the QD embedded in a nanowire (right). (b) Configuration AS, NWQD coupled to a line-array plasmonic bowtie nanoantenna in an air superstrate with a gold mirror. (c) Configuration SS, NWQD coupled to a line-array plasmonic bowtie nanoantenna in a
From the fabrication perspective, GaAsP nanowires can be grown by a Ga-assisted VLS process, and a GaAs QDs region can be formed by switching off the phosphorus supply [3]. A PMMA-mediated transfer printing technique can manufacture the bowtie–NWQD structure [35]. The
Numerical simulations are performed using finite element methods via COMSOL Multiphysics software to investigate the emission enhancement of the proposed structures, as shown in Fig. 9 (Appendix A). The QD is regarded as a two-level system, and thus, its emission can be modeled as an electric point dipole in the simulation [14,36]. The QD is assumed to have a high internal quantum yield [36]; the ohmic losses of the structure are determined by the non-radiative decay rate [37]. The detailed derivation process is shown in Appendix A. The SE enhancement of NWQD SPE can be evaluated by the Purcell factor
Since a single NWQD will suppress the SE of QDs when the diameter is too small [39], to reflect the enhancement of the designed structure compared to NWQDs with the same diameter, we used the
3. RESULTS AND ANALYSIS
To understand the SE properties of a single NWQD, the emission of an uncoupled NWQD is first briefly investigated, as shown in Fig. 1(a). A cylindrical NWQD with diameter
Figure 2(a) shows the relationship between the
Figure 2.(a) Trend of the variation of
Further, we investigated the effect of the NWQD–single bowtie antenna-coupled devices. As shown in Fig. 3(a), a single bowtie antenna aligned with the center of the NWQD was placed horizontally on the substrate. The size of the bowtie has been optimized to ensure the best coupling effect at the wavelength of 750 nm. The relationship diagram of the size of the bowtie with respect to
Figure 3.(a) The NWQD coupled to a single plasmonic bowtie nanoantenna. (b)
We also simulated the effect of the relative distance between the plasmonic antenna and the QD on the enhancement effect, as shown in Fig. 10 (Appendix B). Like most reported plasmonic–quantum dot coupling structures, the relative distances of the plasmonics and QDs are directly related to the effect of the coupling [31]. The near-field enhancement of the plasmonic is only effective in the near field. When the distance is greater than 40 nm, the coupling between the QD and the plasmonic becomes weak, and the corresponding
After this, we periodically arrange three bowtie antennas into a line array and combine them on the NWQD, as shown in Fig. 4(a).
Figure 4.(a) The NWQD coupled to a line-array plasmonic bowtie nanoantenna. (b)
Figure 5.(a) Electric field mode distributions of three pairs and a single plasmonic antenna under plane wave excitation. (b) Schematic diagram of single QD–line-array plasmonic antennas-coupled device. (c) Electric field mode distribution (V/m) and far-field radiation pattern (V/m) of single QD–line-array plasmonic antennas-coupled device, and the three red dots represent the tips of the three bowties.
As shown in Fig. 11 (Appendix C), we also calculated the spontaneous radiation effect of five pairs of plasmonic antennas. The outermost antenna negatively influences the whole structure because it is too far from the QD (
The nanowires also play a crucial role in the device, and we simulated a single QD–line-array plasmonic antennas-coupled device without nanowires, as shown in Figs. 5(b)–5(d). In the absence of nanowires, it is difficult to observe the hot spots of the plasmonic antennas on both sides. Correspondingly, the device has poor directivity with large sidelobes on both sides. The nanowire ensures only one QD in a device and acts as a bridge here, passing the QD’s electromagnetic waves to the plasmonic antennas on either side. Because of the nanowire, the plasmonic antennas on both sides can collect the emission from the QDs within the waveguide and enhance the surface-emitting efficiency via the line-array antenna.
The effectiveness of the proposed design of the line-array antenna can be examined by simplifying the model to calculate the spontaneous radiation results of the whole structure theoretically. Comparing Fig. 2(d) and Fig. 3(d), it can be found that the SE of a single bowtie antenna-coupled NWQD is very similar to that of a single-point electric dipole. Therefore, the whole model can be simplified to a line-array model of three-point electric dipoles, as shown in Fig. 6(a). According to the phase distribution shown in Fig. 4(d), the phases of the bowtie on both sides lag behind the central bowtie. The spontaneous emission of the NWQD first excites the bowtie in the middle. After the propagation of
Figure 6.(a) Schematic diagram of a simplified mathematical model of the line-array antenna. (b) Main lobe directivity of the far-field radiation pattern of the simplified mathematical model of the line-array antenna. The inset is far-field patterns for different
The total field is given by
The transformation formulas of unit vectors of different coordinate systems contained therein are described in Eqs. (F1)–(F5). By bringing Eqs. (5)–(7) and Eqs. (F1)–(F5) into Eq. (8), the total far-field pattern of the whole model can be quantitatively calculated. Figure 6(b) depicts the far-field pattern directivity versus period
We have theoretically demonstrated that the vertical directional emission of our proposed line-array bowtie antenna–NWQD coupling structure benefits from the line-array structure. Next, we will further optimize the performance of the entire SPE.
To realize the vertical upward spontaneous emission of the SPE, we design a mirror resonator at the bottom of the structure and construct the AS, as shown in Fig. 1(b). The gold mirror is placed at a specific distance below the SPE. The electromagnetic waves radiated downward by the SPE are reflected upward and coherently superimposed to the radiation above as in an
Figure 7.(a)
Due to the different refractive indices of the substrate and air, two sidelobes appear in the downward radiation of the structure, as shown in Fig. 4(e), which will undoubtedly degrade the performance of the SPE. The SS with an additional coating can improve this phenomenon, as shown in Fig. 8. At the same time, due to the increase of the refractive index around the NWQD, the LDOS around the structure is improved, which further increases the SE rate of the constructed SPE. Figures 16 and 17 (Appendix E) show the effect of coating thickness
Figure 8.(a)
Figure 9.Schematic diagram of the structure used in the physics simulation. Perfectly matched layers are placed outside the physical domain to simulate the propagation of electromagnetic waves in free space (absorbing electromagnetic waves to prevent reflected waves from affecting the structure itself).
Figure 10.Influence of relative distance between the plasmonic antenna and the QD on enhancement effect.
Figure 11.Distribution of electric field film (V/m) of five-pair plasmon antenna–NWQD coupling structure. Five-pair plasmon antenna–NWQD coupling structure electric field film distribution. The red outline is the NWQD, and the five red dots represent the tips of the three bowties.
Figure 12.Effect of the relative errors of the NWQD and plasmonic antenna positions in the AS.
As shown in Fig. 8(a), we investigate the
Figure 13.Effect of the relative errors of the NWQD and plasmonic antenna positions in the SS.
Figure 14.Collection efficiency of the SS with a different numerical aperture (NA).
Figure 15.Collection efficiency of the AS with a different numerical aperture (NA).
4. CONCLUSIONS
In our designs, the configuration of the linear array antenna is used to realize high-quality directional generation in a compact size, which abandons the traditional optical structure characterized by much larger size. The plasmonic antennas on both sides improve the directivity of the device through coherent superposition of beams while enhancing the SE rate of QDs through an over-range enhancement mechanism, in which the nanowires act as bridges. The two proposed structures exhibit good performance effects in terms of SE; compared with NWQDs of the same diameter, the two proposed structures achieve 1054 and 2916 times fluorescence enhancement, respectively. In addition, the proposed structures have lower non-radiative ohmic losses, which is maintained at around 20%, in comparison with the metal nanowire [46], metal-clad structures [47,48], metal gap structure [49], and Bragg grating [15–17,45], which were demonstrated to have a large non-radiation ohmic loss. It is worth noting that the small-diameter NWQD itself will suppress its SE rate, while the nanoantenna overcompensates the SE of the small nanowire. This can result in a lower
In conclusion, we propose two structures to enhance the SE of NWQDs via a line-array plasmonic antenna. Numerical simulations show that the
APPENDIX A: SIMULATION SETTING METHOD
In the simulation of quantum dots, quantum dots are generally regarded as a two-level system, which is set as a point current element [
The enhancement of the total decay rate is expressed by the Purcell factor,
As the quantum dot is considered ideal and isolated from any neighboring dots or quantum confined structures, the non-radiative recombination is considered negligible. It is generally assumed that the intrinsic quantum yield of quantum dots is very high [
Numerical simulations are performed using finite element methods via COMSOL Multiphysics software to investigate the emission enhancement of the proposed structures, as shown in Fig.
APPENDIX B: EFFECT OF RELATIVE DISTANCE BETWEEN PLASMONIC ANTENNA AND QD ON COUPLING STRENGTH
The effect of the relative distance between the plasmonic antenna and the QD on the SE of the device is explored, as shown in Fig.
APPENDIX C: SPONTANEOUS RADIATION OF FIVE PAIRS OF PLASMONIC ANTENNAS
The electric field mode distributions of the five pairs of plasmonic antenna–QD coupling device are shown in Fig.
APPENDIX D: THE AS AND SS DEVICES RELATIVE ERROR AND COLLECTION EFFICIENCY
Considering the experimental error, we also analyzed the offset effect between the QD and the gap center of the bowtie. As shown in Figs.
The collection efficiencies of the AS and SS are calculated as shown in Figs.
APPENDIX E: THE EFFECT OF hSiO2 IN SS ON DEVICE PERFORMANCE
The performance effect of
Figure 16.Performance effect of
Figure 17.Far-field radiation pattern of the SS without gold mirrors with different
APPENDIX F: COORDINATE CONVERSION FORMULA
The conversion formula between the three coordinate systems is
References
[1] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).
[2] I. Aharonovich, D. Englund, M. Toth. Solid-state single-photon emitters. Nat. Photonics, 10, 631-641(2016).
[3] P. Yu, Z. Li, T. Wu, Y.-T. Wang, X. Tong, C.-F. Li, Z. Wang, S.-H. Wei, Y. Zhang, H. Liu, L. Fu, Y. Zhang, J. Wu, H. H. Tan, C. Jagadish, Z. M. Wang. Nanowire quantum dot surface engineering for high temperature single photon emission. ACS Nano, 13, 13492-13500(2019).
[4] C. Wu, S. Kumar, Y. Kan, D. Komisar, Z. Wang, S. I. Bozhevolnyi, F. Ding. Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv., 8, eabk3075(2021).
[5] F. Ripka, H. Kübler, R. Löw, T. Pfau. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science, 362, 446-449(2018).
[6] N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki. Electrically driven single-photon source at room temperature in diamond. Nat. Photonics, 6, 299-303(2012).
[7] X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin. Carbon nanotubes as emerging quantum-light sources. Nat. Mater., 17, 663-670(2018).
[8] M. Toth, I. Aharonovich. Single photon sources in atomically thin materials. Annu. Rev. Phys. Chem., 70, 123-142(2019).
[9] C. Santori, D. Fattal, J. Vučković, G. S. Solomon, Y. Yamamoto. Indistinguishable photons from a single-photon device. Nature, 419, 594-597(2002).
[10] S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, M. Kamp. Two-photon interference from a quantum dot microcavity: persistent pure dephasing and suppression of time jitter. Phys. Rev. B, 91, 075413(2015).
[11] T. Grange, N. Somaschi, C. Antón, L. De Santis, G. Coppola, V. Giesz, A. Lemaître, I. Sagnes, A. Auffèves, P. Senellart. Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett., 118, 253602(2017).
[12] T. B. Hoang, G. M. Akselrod, M. H. Mikkelsen. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett., 16, 270-275(2016).
[13] A. R. Dhawan, C. Belacel, J. U. Esparza-Villa, M. Nasilowski, Z. Wang, C. Schwob, J.-P. Hugonin, L. Coolen, B. Dubertret, P. Senellart, A. Maître. Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas. Light Sci. Appl., 9, 33(2020).
[14] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, M. H. Mikkelsen. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun., 6, 7788(2015).
[15] M. Moczała-Dusanowska, Ł. Dusanowski, S. Gerhardt, Y. M. He, M. Reindl, A. Rastelli, R. Trotta, N. Gregersen, S. Höfling, C. Schneider. Strain-tunable single-photon source based on a quantum dot–micropillar system. ACS Photonics, 6, 2025-2031(2019).
[16] G. Yang, Q. Shen, Y. Niu, H. Wei, B. Bai, M. H. Mikkelsen, H. B. Sun. Unidirectional, ultrafast, and bright spontaneous emission source enabled by a hybrid plasmonic nanoantenna. Laser Photonics Rev., 14, 1900213(2020).
[17] H. Abudayyeh, B. Lubotzky, A. Blake, J. Wang, S. Majumder, Z. Hu, Y. Kim, H. Htoon, R. Bose, A. V. Malko, J. A. Hollingsworth, R. Rapaport. Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas. APL Photonics, 6, 036109(2021).
[18] F. Huang, M. Li, F. Chen, H. Zhang, Q. Li. Gap surface plasmon and plasmonic waveguide based single photon source. 17th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 43-44(2017).
[19] H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, Y. Gu. High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon. Sci. Rep., 8, 11244(2018).
[20] S. Hepp, F. Hornung, S. Bauer, E. Hesselmeier, X. Yuan, M. Jetter, S. L. Portalupi, A. Rastelli, P. Michler. Purcell-enhanced single-photon emission from a strain-tunable quantum dot in a cavity-waveguide device. Appl. Phys. Lett., 117, 254002(2020).
[21] X. Huang, X. Tong, Z. Wang. Rational design of colloidal core/shell quantum dots for optoelectronic applications. J. Electron. Sci. Technol., 18, 100018(2020).
[22] V. Krivenkov, P. Samokhvalov, I. Nabiev, Y. P. Rakovich. Synergy of excitation enhancement and the Purcell effect for strong photoluminescence enhancement in a thin-film hybrid structure based on quantum dots and plasmon nanoparticles. J. Phys. Chem. Lett., 11, 8018-8025(2020).
[23] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).
[24] A. Neogi, H. Morkoc, T. Kuroda, A. Tackeuchi, T. Kawazoe, M. Ohtsu. Exciton localization in vertically and laterally coupled GaN/AlN quantum dots. Nano Lett., 5, 213-217(2005).
[25] M. S. Skolnick, D. J. Mowbray. Self-assembled semiconductor quantum dots: fundamental physics and device applications. Annu. Rev. Mater. Res., 34, 181-218(2004).
[26] A. Neogi, B. Gorman, H. Morkoç, T. Kawazoe, M. Ohtsu. Near-field optical spectroscopy and microscopy of self-assembled GaN/AlN nanostructures. Appl. Phys. Lett., 86, 043103(2005).
[27] P. Yu, J. Wu, L. Gao, H. Liu, Z. Wang. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy. Solar Energy Mater. Sol. Cells, 161, 377-381(2017).
[28] M. Pfeiffer, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, M. Lippitz, K. Lindfors. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas. Sci. Rep., 8, 3415(2018).
[29] J. Lee, A. O. Govorov, J. Dulka, N. A. Kotov. Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett., 4, 2323-2330(2004).
[30] J. Lee, P. Hernandez, J. Lee, A. O. Govorov, N. A. Kotov. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater., 6, 291-295(2007).
[31] B. Wang, P. Yu, W. Wang, X. Zhang, H.-C. Kuo, H. Xu, Z. M. Wang. High-
[32] G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. P. Bakkers, L. P. Kouwenhoven, V. Zwiller. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides. Appl. Phys. Lett., 100, 121106(2012).
[33] P. Li, P. Yu, W. Wang, F. Lin, H. Xu, Z. Wang. Efficient single-photon emission from a nanowire quantum dot coupled to a plasmonic nanoantenna. J. Lightwave Technol., 39, 7495-7501(2021).
[34] S. Kolatschek, C. Nawrath, S. Bauer, J. S. Huang, J. Fischer, R. Sittig, M. Jetter, S. L. Portalupi, P. Michler. Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating. Nano Lett., 21, 7740-7745(2021).
[35] Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, X. Zhu. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett., 11, 1676-1680(2011).
[36] P. Anger, P. Bharadwaj, L. Novotny. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett., 96, 113002(2006).
[37] R. Chance, A. Prock, R. Silbey. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys., 37, 1-65(1978).
[38] P. Bharadwaj, L. Novotny. Spectral dependence of single molecule fluorescence enhancement. Opt. Express, 15, 14266-14274(2007).
[39] N. Mukhundhan, A. Ajay, J. Bissinger, J. J. Finley, G. Koblmüller. Purcell enhanced coupling of nanowire quantum emitters to silicon photonic waveguides. Opt. Express, 29, 43068-43081(2021).
[40] B. Conrad, A. Lochtefeld, A. Gerger, A. Barnett, I. Perez-Wurfl. Optical characterisation of III-V alloys grown on Si by spectroscopic ellipsometry. Solar Energy Mater. Sol. Cells, 162, 7-12(2017).
[41] I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, J. M. Gérard. Solid-state single photon sources: the nanowire antenna. Opt. Express, 17, 2095-2110(2009).
[42] X. Guo, Y. B. Ying, L. M. Tong. Photonic nanowires: from subwavelength waveguides to optical sensors. Acc. Chem. Res., 47, 656-666(2014).
[43] J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. Gérard, I. Maksymov, J.-P. Hugonin, P. Lalanne. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett., 106, 103601(2011).
[44] H. Matzner, M. Milgrom, S. Shtrikman. Magnetoelectric symmetry and electromagnetic radiation. Ferroelectrics, 161, 213-219(1994).
[45] M. Moczala-Dusanowska, L. Dusanowski, O. Iff, T. Huber, S. Kuhn, T. Czyszanowski, C. Schneider, S. Hoefling. Strain-tunable single-photon source based on a circular Bragg grating cavity with embedded quantum dots. ACS Photonics, 7, 3474-3480(2020).
[46] G. Zhang, S. Jia, Y. Gu, J. Chen. Brightening and guiding single-photon emission by plasmonic waveguide–slit structures on a metallic substrate. Laser Photonics Rev., 13, 1900025(2019).
[47] C. C. Chiang, S. I. Bogdanov, O. A. Makarova, X. Xu, S. Saha, D. Shah, Z. O. Martin, D. Wang, A. S. Lagutchev, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Chip-compatible quantum plasmonic launcher. Adv. Opt. Mater., 8, 2000889(2020).
[48] B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski, X. Xu, N. Lequeux, J. P. Hugonin, F. Marquier, J. J. Greffet, B. Dubertret. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol., 10, 170-175(2015).
[49] W. Wei, X. Yan, J. Liu, B. Shen, W. Luo, X. Ma, X. Zhang. Enhancement of single-photon emission rate from InGaAs/GaAs quantum-dot/nanowire heterostructure by wire-groove nanocavity. Nanomaterials, 9, 671(2019).
[50] D. Magde, R. Wong, P. G. Seybold. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol., 75, 327-334(2002).
[51] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics, 3, 654-657(2009).
[52] M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics, 9, 781-799(2014).
[53] J. McBride, J. Treadway, L. Feldman, S. J. Pennycook, S. J. Rosenthal. Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett., 6, 1496-1501(2006).
[54] A. M. Smith, A. M. Mohs, S. Nie. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol., 4, 56-63(2009).
[55] T. Frecker, D. Bailey, X. Arzeta-Ferrer, J. McBride, S. J. Rosenthal. Review—quantum dots and their application in lighting, displays, and biology. ECS J. Solid State Sci. Technol., 5, R3019-R3031(2016).

Set citation alerts for the article
Please enter your email address