• Laser & Optoelectronics Progress
  • Vol. 54, Issue 7, 71402 (2017)
Pan Aiqiong1、2、*, Zhang Hui1, and Wang Zemin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop54.071402 Cite this Article Set citation alerts
    Pan Aiqiong, Zhang Hui, Wang Zemin. Molten Pool Microstructure of Ni-Based Single Crystal Superalloys Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2017, 54(7): 71402 Copy Citation Text show less
    References

    [1] Hu Zhuangqi, Liu Lirong, Jin Tao, et al. Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31(3): 1-7.

    [2] Tang Zhongjie, Guo Tieming, Fu Ying, et al. Research present situation and the development prospect of nickel-based superalloy[J]. Metal World, 2014(1): 36-40.

    [3] Ford T. Single crystal blades[J]. Aircraft Engineering and Aerospace Technology, 1997, 69(6): 564-566.

    [4] Arakere N K, Swanson G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 161-176.

    [5] Kurz W, Bezenon C, Gumann M. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials, 2001, 2(1): 185-191.

    [6] Gumann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloy: Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

    [7] Mokadem S, Bezenon C, Hauert A, et al. Laser repair of superalloy single crystals with varying substrate orientations[J]. Metalllurgical and Materials Transactions A, 2007, 38(7): 1500-1510.

    [8] Ardakani M G, D′Souza N, Wagner A, et al. Competitive grain growth and texture evolution during directional solidification of superalloys[A]. The Minerals Metals and Materials Society, 2000.

    [9] Yang S, Huang W D, Liu W J, et al. Development of microstructures in laser surface remelting of DD2 single crystal[J]. Acta Materialia, 2002, 50(2): 315-325.

    [10] Huang Weidong. Laser solid forming[M]. Xi′an: Northwestern Polytechnical University Press, 2007.

    [11] Chen Guangxia, Zeng Xiaoyan. Comparative research on direct laser fabrication and selective laser melting[J]. Modern Manufacturing Engineering, 2005(5): 72-75.

    [12] Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel[J]. Physics Procedia, 2011, 12: 255-263.

    [13] Wang F, Wu X H, Clark D. On direct laser deposited Hastelloy-X: dimension, surface finish, microstructure and mechanical properties[J]. Materials Science and Technology, 2011, 27(1): 344-356.

    [14] Jia Q B, Gu D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties[J]. Journal of Alloys and Compounds, 2014, 585(6): 713-721.

    [15] Carter L N, Wang X, Read N, et al. Process optimisation of selective laser melting using energy density model for nickel based superalloys[J]. Materials Science and Technology, 2016, 32(7): 657-661.

    [16] Hou Huipeng, Liang Yongchao, He Yanli, et al. Microstructure evolution and tensile properties of Hastelloy-X parts produced by selective laser melting[J]. Chinese J Lasers, 2017, 44(2): 0202007.

    [17] Yan Anru, Yang Tiantian, Wang Yanling, et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese J Lasers, 2016, 43(2): 0203004.

    [18] Pan Aiqiong. Study on SRR99 Ni-based single-crystal superalloy by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2013: 28-29.

    Pan Aiqiong, Zhang Hui, Wang Zemin. Molten Pool Microstructure of Ni-Based Single Crystal Superalloys Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2017, 54(7): 71402
    Download Citation