• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111418 (2020)
Zhipeng Wu1, Kai Yin1、2、*, Junrui Wu1, Shuai Yang1, and Zhuo Zhu1
Author Affiliations
  • 1Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
  • 2State Key Laboratory of High Performance and Complex Manufacturing,Central South University, Changsha, Hunan 410083, China
  • show less
    DOI: 10.3788/LOP57.111418 Cite this Article Set citation alerts
    Zhipeng Wu, Kai Yin, Junrui Wu, Shuai Yang, Zhuo Zhu. Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111418 Copy Citation Text show less
    References

    [1] et alRecent developments in superhydrophobic surfaces with unique structural and functional properties[J]. Soft Matter, 8, 11217-11231(2012).

         Zhang Y L, Xia H, Kim E et al. Recent developments in superhydrophobic surfaces with unique structural and functional properties[J]. Soft Matter, 8, 11217-11231(2012).

    [2] Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2, 16319-16359(2014).

         Darmanin T, Guittard F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2, 16319-16359(2014).

    [3] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 39, 3240-3255(2010).

         Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 39, 3240-3255(2010).

    [4] Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 20, 2842-2858(2008).

         Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 20, 2842-2858(2008).

    [5] et alExtreme wettability and tunable adhesion: biomimicking beyond nature?[J]. Soft Matter, 8, 2070-2086(2012).

         Liu X J, Liang Y M, Zhou F et al. Extreme wettability and tunable adhesion: biomimicking beyond nature?[J]. Soft Matter, 8, 2070-2086(2012).

    [6] Chang B S, Zhang M X, Qing G Y et al. Dynamic biointerfaces: from recognition to function[J]. Small, 11, 1097-1112(2015).

          et alDynamic biointerfaces: from recognition to function[J]. Small, 11, 1097-1112(2015).

    [7] Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 3, 12003-12020(2013).

         Zhang X X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 3, 12003-12020(2013).

    [8] Zhang Y B, Chen Y, Shi L et al. Recent progress of double-structural and functional materials with special wettability[J]. Journal of Materials Chemistry, 22, 799-815(2012).

          et alRecent progress of double-structural and functional materials with special wettability[J]. Journal of Materials Chemistry, 22, 799-815(2012).

    [9] et alSpecial wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2, 2445-2460(2014).

         Xue Z X, Cao Y Z, Liu N et al. Special wettable materials for oil/water separation[J]. Journal of Materials Chemistry A, 2, 2445-2460(2014).

    [10] et alResearch progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

         Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [11] McDowell D, et al. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science & Technology, 36, 3855-3863(2002).

         Ternes T A, Meisenheimer M. McDowell D, et al. Removal of pharmaceuticals during drinking water treatment[J]. Environmental Science & Technology, 36, 3855-3863(2002).

    [12] Donne S W, Evans G M. Hydrogen bubble flotation of silica[J]. Advanced Powder Technology, 21, 412-418(2010).

         Hydrogen bubble flotation of silica[J]. Advanced Powder Technology, 21, 412-418(2010).

    [13] Lu Z Y, Zhu W, Yu X Y et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” Mo S2Nanostructured electrodes[J]. Advanced Materials, 26, 2683-2687(2014).

          et alUltrahigh hydrogen evolution performance of under-water “superaerophobic” Mo S2Nanostructured electrodes[J]. Advanced Materials, 26, 2683-2687(2014).

    [14] Siddiqui M S, Amy G L, Murphy B D. Ozone enhanced removal of natural organic matter from drinking water sources[J]. Water Research, 31, 3098-3106(1997).

         Ozone enhanced removal of natural organic matter from drinking water sources[J]. Water Research, 31, 3098-3106(1997).

    [15] Bonn D, Eggers J, Indekeu J et al. Wetting and spreading[J]. Reviews of Modern Physics, 81, 739-805(2009).

          et alWetting and spreading[J]. Reviews of Modern Physics, 81, 739-805(2009).

    [16] Kibsgaard J, Chen Z B, Reinecke B N et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 11, 963-969(2012).

          et alEngineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 11, 963-969(2012).

    [17] et alSuperwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 51, 1590-1598(2018).

         Xu W W, Lu Z Y, Sun X M et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 51, 1590-1598(2018).

    [18] et alElectrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC[J]. Journal of Power Sources, 167, 413-419(2007).

         Wang S K, Tseng F, Yeh T K et al. Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC[J]. Journal of Power Sources, 167, 413-419(2007).

    [19] et alSurface, kinetics and electrocatalytic properties of Ti/( IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production[J]. Electrochimica Acta, 49, 3977-3988(2004).

         da Silva L M, Franco D V, de Faria L A et al. Surface, kinetics and electrocatalytic properties of Ti/( IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production[J]. Electrochimica Acta, 49, 3977-3988(2004).

    [20] Handa-Corrigan A, Emery A N, Spier R E. Effect of gas: liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles[J]. Enzyme and Microbial Technology, 11, 230-235(1989).

         Effect of gas: liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles[J]. Enzyme and Microbial Technology, 11, 230-235(1989).

    [21] Wu J Y, Ruan Q. Peter Lam H Y. Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage[J]. Enzyme and Microbial Technology, 21, 341-348(1997).

         Peter Lam H Y. Effects of surface-active medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage[J]. Enzyme and Microbial Technology, 21, 341-348(1997).

    [22] Yap R K L, Whittaker M, Diao M et al. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers indissolved air flotation for cyanobacteria cell separation[J]. Water Research, 61, 253-262(2014).

          et alHydrophobically-associating cationic polymers as micro-bubble surface modifiers indissolved air flotation for cyanobacteria cell separation[J]. Water Research, 61, 253-262(2014).

    [23] Ceccio S L. Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 42, 183-203(2010).

         Friction drag reduction of external flows with bubble and gas injection[J]. Annual Review of Fluid Mechanics, 42, 183-203(2010).

    [24] et alUnderwater drag-reducing effect of superhydrophobic submarine model[J]. Langmuir, 31, 587-593(2015).

         Zhang S S, Ouyang X, Li J et al. Underwater drag-reducing effect of superhydrophobic submarine model[J]. Langmuir, 31, 587-593(2015).

    [25] et alVacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Journal of Materials Processing Technology, 212, 198-202(2012).

         Zhao D Y, Huang Z P, Wang M J et al. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Journal of Materials Processing Technology, 212, 198-202(2012).

    [26] Chen C, Shi L A, Huang Z C et al. Microhole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport[J]. Advanced Materials Interfaces, 6, 1900297(2019).

          et alMicrohole-arrayed PDMS with controllable wettability gradient by one-step femtosecond laser drilling for ultrafast underwater bubble unidirectional self-transport[J]. Advanced Materials Interfaces, 6, 1900297(2019).

    [27] et alAnisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 11, 20574-20580(2019).

         Lü X D, Jiao Y L, Wu S Z et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 11, 20574-20580(2019).

    [28] et alA review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2, 14773-14797(2014).

         Ragesh P, Anand Ganesh V, Nair S V et al. A review on ‘self-cleaning and multifunctional materials’[J]. Journal of Materials Chemistry A, 2, 14773-14797(2014).

    [29] Wang X, Wang Z B, Heng L P et al. Stableomniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles[J]. Advanced Functional Materials, 30, 1902686(2020).

          et alStableomniphobic anisotropic covalently grafted slippery surfaces for directional transportation of drops and bubbles[J]. Advanced Functional Materials, 30, 1902686(2020).

    [30] Lu Z Y, Xu W W, Ma J et al. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction[J]. Advanced Materials, 28, 7155-7161(2016).

          et alSuperaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction[J]. Advanced Materials, 28, 7155-7161(2016).

    [31] et alMorphology-control strategy of the superhydrophobic poly(methyl methacrylate) surface for efficient bubble adhesion and wastewater remediation[J]. Advanced Functional Materials, 27, 1702020(2017).

         Zhang C H, Cao M Y, Ma H Y et al. Morphology-control strategy of the superhydrophobic poly(methyl methacrylate) surface for efficient bubble adhesion and wastewater remediation[J]. Advanced Functional Materials, 27, 1702020(2017).

    [32] et alDirectional andcontinuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Advanced Functional Materials, 28, 1705091(2018).

         Ma H Y, Cao M Y, Zhang C H et al. Directional andcontinuous transport of gas bubbles on superaerophilic geometry-gradient surfaces in aqueous environments[J]. Advanced Functional Materials, 28, 1705091(2018).

    [33] Lee C, Kim C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 106, 014502(2011).

         Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 106, 014502(2011).

    [34] Wu Y, Wei Q B, Cai M R et al. Interfacial friction control[J]. Advanced Materials Interfaces, 2, 1400392(2015).

          et alInterfacial friction control[J]. Advanced Materials Interfaces, 2, 1400392(2015).

    [35] Zhang X, Liu H W, Huang X Z et al. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry C, 3, 3336-3341(2015).

          et alOne-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry C, 3, 3336-3341(2015).

    [36] ElKabbash M, et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 9, 14(2020).

         Jalil S A, Lai B. ElKabbash M, et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices[J]. Light: Science & Applications, 9, 14(2020).

    [37] Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 46, 0902002(2019).

         Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 46, 0902002(2019).

    [38] Wang Z H, Wang B X, Kamano M et al. Fabrication of silicon micro/nanostructures based on laser interference ablation[J]. Laser & Optoelectronics Progress, 56, 163201(2019).

          et alFabrication of silicon micro/nanostructures based on laser interference ablation[J]. Laser & Optoelectronics Progress, 56, 163201(2019).

    [39] et alA review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1701370(2018).

         Yong J L, Chen F, Yang Q et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 5, 1701370(2018).

    [40] et alUltrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation[J]. Nanoscale, 11, 17607-17614(2019).

         Yang S, Yin K, Wu J R et al. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation[J]. Nanoscale, 11, 17607-17614(2019).

    [41] Chu D K, Yin K, Dong X R et al. Ablation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy[J]. Chinese Optics Letters, 16, 011401(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171110000165TpWsYv

          et alAblation enhancement by defocused irradiation assisted femtosecond laser fabrication of stainless alloy[J]. Chinese Optics Letters, 16, 011401(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ171110000165TpWsYv

    [42] et alA simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 9, 14620-14626(2017).

         Yin K, Du H F, Dong X R et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 9, 14620-14626(2017).

    [43] Yin K, Chu D K, Dong X R et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).

          et alFemtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 9, 14229-14235(2017).

    [44] Long J Y, Fan P X, Gong D W et al. Ultrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 43, 0800001(2016).

          et alUltrafast laser fabricated bio-inspired surfaces with special wettability[J]. Chinese Journal of Lasers, 43, 0800001(2016).

    [45] et alBioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 5, 6777-6792(2013).

         Chen F, Zhang D S, Yang Q et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 5, 6777-6792(2013).

    [46] et alFemtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).

         Yong J L, Chen F, Yang Q et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 11, 8897-8906(2015).

    [47] et alUnderwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).

         Huo J L, Yang Q, Chen F et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 33, 3659-3665(2017).

    [48] Liu M J, Wang S T, Jiang L. Nature-inspired superwett ability systems[J]. Nature Reviews Materials, 2, 17036(2017).

         Nature-inspired superwett ability systems[J]. Nature Reviews Materials, 2, 17036(2017).

    [49] Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

         Pan R, Zhong ML. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

    [50] Yong J L, Chen F, Yang Q et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).

          et alSuperoleophobic surfaces[J]. Chemical Society Reviews, 46, 4168-4217(2017).

    [51] et alFemtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 64, 1213-1237(2019).

         Yong J L, Yang Q, Chen F et al. Femtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 64, 1213-1237(2019).

    [52] Zhang P C, Wang S S, Wang S T et al. Superwetting surfaces under different media: effects of surface topography on wettability[J]. Small, 11, 1939-1946(2015).

          et alSuperwetting surfaces under different media: effects of surface topography on wettability[J]. Small, 11, 1939-1946(2015).

    [53] Yu C M, Zhang P P, Wang J M et al. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 29, 1703053(2017).

          et alSuperwettability of gas bubbles and its application: from bioinspiration to advanced materials[J]. Advanced Materials, 29, 1703053(2017).

    [54] Xue X Z, Wang R X, Lan L W et al. Reliable manipulation of gas bubble size on superaerophilic cones in aqueous media[J]. ACS applied materials & interfaces, 10, 5099-5106(2018).

          et alReliable manipulation of gas bubble size on superaerophilic cones in aqueous media[J]. ACS applied materials & interfaces, 10, 5099-5106(2018).

    [55] Ling W Y L, Lu G, Ng T W. Increased stability and size of a bubble on a superhydrophobic surface[J]. Langmuir, 27, 3233-3237(2011).

         Increased stability and size of a bubble on a superhydrophobic surface[J]. Langmuir, 27, 3233-3237(2011).

    [56] et alSuperaerophilic copper nanowires for efficient and switchable CO2 electroreduction[J]. Nanoscale Horizons, 4, 490-494(2019).

         Zhang Y, Cai Z, Zhao Y et al. Superaerophilic copper nanowires for efficient and switchable CO2 electroreduction[J]. Nanoscale Horizons, 4, 490-494(2019).

    [57] de Maleprade H, Clanet C, Quéré D. Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water[J]. Physical Review Letters, 117, 094501(2016).

         Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water[J]. Physical Review Letters, 117, 094501(2016).

    [58] et alPreparation of superaerophilic copper mesh for underwater gas collection by combination of spraying technology and flame treatment[J]. Applied Physics A, 126, 24(2020).

         Wang J P, Wu Y L, Zhang D G et al. Preparation of superaerophilic copper mesh for underwater gas collection by combination of spraying technology and flame treatment[J]. Applied Physics A, 126, 24(2020).

    [59] Li Z, Cao C, Zhu Z et al. Superaerophilic materials are surprising catalysts: wettability-induced excellent hydrogenation activity under ambient H2 pressure[J]. Advanced Materials Interfaces, 5, 1801259(2018).

          et alSuperaerophilic materials are surprising catalysts: wettability-induced excellent hydrogenation activity under ambient H2 pressure[J]. Advanced Materials Interfaces, 5, 1801259(2018).

    [60] Dorrer C, Rühe J. Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates[J]. Langmuir, 28, 14968-14973(2012).

         Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates[J]. Langmuir, 28, 14968-14973(2012).

    [61] Recent progress infabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces, 4, 1601088(2017).

         George J E, Chidangil S, George S D. Recent progress infabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces, 4, 1601088(2017).

    [62] et alFemtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure[J]. Optics Express, 16, 20029-20037(2008).

         Little D J, Ams M, Dekker P et al. Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure[J]. Optics Express, 16, 20029-20037(2008).

    [63] He S T, Yu J, Hu M L. Femtosecond laser high precision fabrication for novel applications[J]. Current Nanoscience, 12, 676-684(2016).

         Femtosecond laser high precision fabrication for novel applications[J]. Current Nanoscience, 12, 676-684(2016).

    [64] Li Y J, Zhang H C, Xu T H et al. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Advanced Functional Materials, 25, 1737-1744(2015).

          et alUnder-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution[J]. Advanced Functional Materials, 25, 1737-1744(2015).

    [65] Yang H C, Hou J W, Wan L S et al. Janus membranes with asymmetric wettability for fine bubble aeration[J]. Advanced Materials Interfaces, 3, 1500774(2016).

          et alJanus membranes with asymmetric wettability for fine bubble aeration[J]. Advanced Materials Interfaces, 3, 1500774(2016).

    [66] Chu D K, Sun X Y, Hu Y W et al. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment[J]. Soft Matter, 15, 7398-7403(2019).

          et alSubstrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment[J]. Soft Matter, 15, 7398-7403(2019).

    [67] et alFemtosecond laser structuring of Janus foam: water spontaneous antigravity unidirectional penetration and pumping[J]. Applied Physics Letters, 113, 203701(2018).

         Yang S, Yin K, Chu D K et al. Femtosecond laser structuring of Janus foam: water spontaneous antigravity unidirectional penetration and pumping[J]. Applied Physics Letters, 113, 203701(2018).

    [68] Yin K, Dong X R, Zhang F et al. Superamphiphobic miniature boat fabricated by laser micromachining[J]. Applied Physics Letters, 110, 121909(2017).

          et alSuperamphiphobic miniature boat fabricated by laser micromachining[J]. Applied Physics Letters, 110, 121909(2017).

    [69] et alUnder-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure[J]. Nanoscale, 12, 4077-4084(2020).

         Wu J R, Yin K, Li M et al. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure[J]. Nanoscale, 12, 4077-4084(2020).

    [70] Zhang C H, Zhang B, Ma H Y et al. Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 12, 2048-2055(2018).

          et alBioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment[J]. ACS Nano, 12, 2048-2055(2018).

    [71] Ma R, Wang J M, Yang Z J et al. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium[J]. Advanced Materials, 27, 2384-2389(2015).

          et alBioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium[J]. Advanced Materials, 27, 2384-2389(2015).

    [72] Geyer F, Schönecker C, Butt H J et al. Enhancing CO2 capture using robust superomniphobic membranes[J]. Advanced Materials, 29, 1603524(2017).

          et alEnhancing CO2 capture using robust superomniphobic membranes[J]. Advanced Materials, 29, 1603524(2017).

    [73] et alSuperaerophobic electrodes for direct hydrazine fuel cells[J]. Advanced Materials, 27, 2361-2366(2015).

         Lu Z Y, Sun M, Xu T H et al. Superaerophobic electrodes for direct hydrazine fuel cells[J]. Advanced Materials, 27, 2361-2366(2015).

    [74] Faber M S, Dziedzic R, Lukowski M A et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. Journal of the American Chemical Society, 136, 10053-10061(2014).

          et alHigh-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures[J]. Journal of the American Chemical Society, 136, 10053-10061(2014).

    [75] Yang S, Yin K, Dong X R et al. Lasers tructuring of underwater bubble-repellent surface[J]. Journal of Nanoscience and Nanotechnology, 18, 8381-8385(2018).

          et alLasers tructuring of underwater bubble-repellent surface[J]. Journal of Nanoscience and Nanotechnology, 18, 8381-8385(2018).

    [76] Jiao Y L, Lü X, Zhang Y Y et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 11, 1370-1378(2019).

          et alPitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 11, 1370-1378(2019).

    [77] Yong J L, Chen F, Fang Y et al. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 9, 39863-39871(2017).

          et alBioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles[J]. ACS Applied Materials & Interfaces, 9, 39863-39871(2017).

    [78] et alSpontaneous and directional transportation of gas bubbles on superhydrophobic cones[J]. Advanced Functional Materials, 26, 3236-3243(2016).

         Yu C M, Cao M Y, Dong Z C et al. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones[J]. Advanced Functional Materials, 26, 3236-3243(2016).

    [79] Pei C T, Peng Y, Zhang Y et al. An integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration[J]. ACS Nano, 12, 5489-5494(2018).

          et alAn integrated Janus mesh: underwater bubble antibuoyancy unidirectional penetration[J]. ACS Nano, 12, 5489-5494(2018).

    [80] Zhu S W, Li J W, Cai S W et al. Unidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 12, 18110-18115(2020).

          et alUnidirectional transport and effective collection of underwater CO2 bubbles utilizing ultrafast-laser-ablated Janus foam[J]. ACS Applied Materials & Interfaces, 12, 18110-18115(2020).

    [81] The wettability of gas bubbles: from macro behavior to nano structures to applications[J]. Nanoscale, 10, 19659-19672(2018).

         Huang C, Guo Z G. The wettability of gas bubbles: from macro behavior to nano structures to applications[J]. Nanoscale, 10, 19659-19672(2018).

    [82] ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 11, 48512-48517(2019).

         Zhan Z B. ElKabbash M, Cheng J L, et al. Highly floatable superhydrophobic metallic assembly for aquatic applications[J]. ACS Applied Materials & Interfaces, 11, 48512-48517(2019).

    [83] Hu Y L, Qiu W X, Zhang Y Y et al. Channel-controlled Janus membrane fabricated by simultaneous laser ablation and nanoparticles deposition for underwater bubbles manipulation[J]. Applied Physics Letters, 114, 173701(2019).

          et alChannel-controlled Janus membrane fabricated by simultaneous laser ablation and nanoparticles deposition for underwater bubbles manipulation[J]. Applied Physics Letters, 114, 173701(2019).

    [84] et alSuperhydrophobic and superaerophilic hierarchical Pt@MIL-101/PVDF composite for hydrogen water isotope exchange reactions[J]. Journal of Hazardous Materials, 380, 120904(2019).

         Fu X L, Hou J W, Chen C et al. Superhydrophobic and superaerophilic hierarchical Pt@MIL-101/PVDF composite for hydrogen water isotope exchange reactions[J]. Journal of Hazardous Materials, 380, 120904(2019).

    [85] et al“superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities[J]. Journal of the American Chemical Society, 141, 7537-7543(2019).

         Yu X X, Yu Z Y, Zhang X L et al. “superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities[J]. Journal of the American Chemical Society, 141, 7537-7543(2019).

    [86] Gao A L, Fan H Q, Zhang G F et al. Facile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions[J]. Journal of Colloid and Interface Science, 557, 282-290(2019).

          et alFacile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions[J]. Journal of Colloid and Interface Science, 557, 282-290(2019).

    [87] et alSmart transportation between three phases through a stimulus-responsive functionally cooperating device[J]. Advanced Materials, 25, 2915-2919(2013).

         Ju G N, Cheng M J, Xiao M et al. Smart transportation between three phases through a stimulus-responsive functionally cooperating device[J]. Advanced Materials, 25, 2915-2919(2013).

    [88] et alUnderwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity[J]. Small, 11, 3338-3342(2015).

         Liu H L, Zhang X Q, Wang S T et al. Underwater thermoresponsive surface with switchable oil-wettability between superoleophobicity and superoleophilicity[J]. Small, 11, 3338-3342(2015).

    [90] et alLight-induced amphiphilic surfaces[J]. Nature, 388, 431-432(1997).

         Wang R, Hashimoto K, Fujishima A et al. Light-induced amphiphilic surfaces[J]. Nature, 388, 431-432(1997).

    [91] Liu K S, Cao M Y, Fujishima A et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 114, 10044-10094(2014).

          et alBio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 114, 10044-10094(2014).

    [92] et alReversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 43, 357-360(2004).

         Sun T L, Wang G J, Feng L et al. Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angewandte Chemie International Edition, 43, 357-360(2004).

    [93] et alPhotoinduced underwater superoleophobicity of TiO2 thin films[J]. Langmuir, 29, 6784-6789(2013).

         Sawai Y, Nishimoto S, Kameshima Y et al. Photoinduced underwater superoleophobicity of TiO2 thin films[J]. Langmuir, 29, 6784-6789(2013).

    [94] Liu Y, Lin Z Y, Lin W et al. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films[J]. ACS Applied Materials & Interfaces, 4, 3959-3964(2012).

          et alReversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films[J]. ACS Applied Materials & Interfaces, 4, 3959-3964(2012).

    [95] et alDual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Advanced Materials, 18, 432-436(2006).

         Xia F, Feng L, Wang S et al. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity[J]. Advanced Materials, 18, 432-436(2006).

    [96] Huo J L, Yong J L, Chen F et al. Air bubble control: trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 6, 1970106(2019).

          et alAir bubble control: trapped air-induced reversible transition between underwater superaerophilicity and superaerophobicity on the femtosecond laser-ablated superhydrophobic PTFE surfaces[J]. Advanced Materials Interfaces, 6, 1970106(2019).

    [97] Yong J L, Chen F, Huo J L et al. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 10, 3688-3696(2018).

          et alFemtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas[J]. Nanoscale, 10, 3688-3696(2018).

    [98] Jiao Y L, Li C Z, Wu S Z et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 10, 16867-16873(2018).

          et alSwitchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 10, 16867-16873(2018).

    [99] Jiao Y L, Li C Z, Lü X et al. In situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 6, 20878-20886(2018).

          et alIn situ tunable bubble wettability with fast response induced by solution surface tension[J]. Journal of Materials Chemistry A, 6, 20878-20886(2018).

    [100] et alSubstrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 11, 8667-8675(2019).

         Yong J L, Singh S C, Zhan Z B et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces, 11, 8667-8675(2019).

    [101] Verschoof R A, Sun C et al. Bubble drag reduction requires large bubbles[J]. Physical Review Letters, 117, 104502(2016).

          et alBubble drag reduction requires large bubbles[J]. Physical Review Letters, 117, 104502(2016).

    [102] et alManipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 27, 1701605(2017).

         Yu C M, Zhu X B, Li K et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 27, 1701605(2017).

    [103] et alTerminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 24, 5884-5889(2012).

         Chen X, Wu Y C, Su B et al. Terminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 24, 5884-5889(2012).

    [104] et alFemtosecond laser fabrication of shape-gradient platform: underwater bubbles continuous self-driven and unidirectional transportation[J]. Applied Surface Science, 471, 999-1004(2019).

         Yin K, Yang S, Dong X R et al. Femtosecond laser fabrication of shape-gradient platform: underwater bubbles continuous self-driven and unidirectional transportation[J]. Applied Surface Science, 471, 999-1004(2019).

    [105] et alA hierarchical superaerophilic cone: robust spontaneous and directional transport of gas bubbles[J]. Applied Physics Letters, 113, 203704(2018).

         Duan J A, Dong X R, Yin K et al. A hierarchical superaerophilic cone: robust spontaneous and directional transport of gas bubbles[J]. Applied Physics Letters, 113, 203704(2018).

    [106] et alRobust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles[J]. Applied Physics Letters, 112, 243701(2018).

         Yin K, Yang S, Dong X R et al. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles[J]. Applied Physics Letters, 112, 243701(2018).

    [107] Yan S G, Ren F F, Li C Z et al. Unidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Applied Physics Letters, 113, 261602(2018).

          et alUnidirectional self-transport of air bubble via a Janus membrane in aqueous environment[J]. Applied Physics Letters, 113, 261602(2018).

    [108] Chen C, Huang Z C, Shi L A et al. Remote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4 -doped surfaces[J]. Advanced Functional Materials, 29, 1904766(2019).

          et alRemote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4 -doped surfaces[J]. Advanced Functional Materials, 29, 1904766(2019).

    Zhipeng Wu, Kai Yin, Junrui Wu, Shuai Yang, Zhuo Zhu. Femtosecond Laser Micro-Nano Fabrication of Underwater Gas Wettable Surface[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111418
    Download Citation