• Photonics Research
  • Vol. 8, Issue 2, 143 (2020)
Xunwei Xu1、*, Yanjun Zhao2, Hui Wang3, Hui Jing4、6, and Aixi Chen1、5、7
Author Affiliations
  • 1Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
  • 2Faculty of Information Technology, College of Microelectronics, Beijing University of Technology, Beijing 100124, China
  • 3Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
  • 4Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 5Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 6e-mail: jinghui73@foxmail.com
  • 7e-mail: aixichen@zstu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000143 Cite this Article Set citation alerts
    Xunwei Xu, Yanjun Zhao, Hui Wang, Hui Jing, Aixi Chen. Quantum nonreciprocality in quadratic optomechanics[J]. Photonics Research, 2020, 8(2): 143 Copy Citation Text show less
    References

    [1] T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [2] F. Marquardt, S. M. Girvin. Optomechanics. Physics, 2, 40(2009).

    [3] M. Aspelmeyer, P. Meystre, K. Schwab. Quantum optomechanics. Phys. Today, 65, 29-35(2012).

    [4] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [5] M. Metcalfe. Applications of cavity optomechanics. Appl. Phys. Rev., 1, 031105(2014).

    [6] Y.-L. Liu, C. Wang, J. Zhang, Y.-X. Liu. Cavity optomechanics: manipulating photons and phonons towards the single-photon strong coupling. Chin. Phys. B, 27, 024204(2018).

    [7] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).

    [8] H. Qiu, J. Dong, L. Liu, X. Zhang. Energy-efficient on-chip optical diode based on the optomechanical effect. Opt. Express, 25, 8975-8985(2017).

    [9] M. Hafezi, P. Rabl. Optomechanically induced non-reciprocity in microring resonators. Opt. Express, 20, 7672-7684(2012).

    [10] M. Schmidt, S. Kessler, V. Peano, O. Painter, F. Marquardt. Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2, 635-641(2015).

    [11] A. Metelmann, A. A. Clerk. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 5, 021025(2015).

    [12] X.-W. Xu, Y. Li. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A, 91, 053854(2015).

    [13] K. Fang, M. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [14] X.-W. Xu, Y. Li, A.-X. Chen, Y.-X. Liu. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A, 93, 023827(2016).

    [15] A. Metelmann, A. A. Clerk. Nonreciprocal quantum interactions and devices via autonomous feedforward. Phys. Rev. A, 95, 013837(2017).

    [16] L. Tian, Z. Li. Nonreciprocal quantum-state conversion between microwave and optical photons. Phys. Rev. A, 96, 013808(2017).

    [17] M.-A. Miri, F. Ruesink, E. Verhagen, A. Alù. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl., 7, 064014(2017).

    [18] G. Li, X. Xiao, Y. Li, X. Wang. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes. Phys. Rev. A, 97, 023801(2018).

    [19] J. Kim, M. C. Kuzyk, K. Han, H. Wang, G. Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys., 11, 275-280(2015).

    [20] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 6, 6193(2015).

    [21] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [22] F. Ruesink, M.-A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [23] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, C.-H. Dong. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun., 9, 1797(2018).

    [24] F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, E. Verhagen. Optical circulation in a multimode optomechanical resonator. Nat. Commun., 9, 1798(2018).

    [25] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 13, 465-471(2017).

    [26] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 8, 604(2017).

    [27] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, J. D. Teufel. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X, 7, 031001(2017).

    [28] S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, J. M. Fink. Mechanical on-chip microwave circulator. Nat. Commun., 8, 953(2017).

    [29] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. Joannopoulos, M. Vanwolleghem, C. Doerr, H. Renner. What is–and what is not–an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [30] H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, X.-M. Lin. Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 96, 013861(2017).

    [31] X.-W. Xu, H.-Q. Shi, A.-X. Chen, Y.-X. Liu. Cross-correlation between photons and phonons in quadratically coupled optomechanical systems. Phys. Rev. A, 98, 013821(2018).

    [32] Y. Shi, Z. Yu, S. Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 9, 388-392(2015).

    [33] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).

    [34] G. B. Malykin. The Sagnac effect: correct and incorrect explanations. Phys. Usp., 43, 1229-1252(2000).

    [35] H. Lü, Y. Jiang, Y.-Z. Wang, H. Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res., 5, 367-371(2017).

    [36] H. Jing, H. Lü, S. K. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 5, 1424-1430(2018).

    [37] S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. Hassan, H. Jing, F. Nori, D. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 558, 569-572(2018).

    [38] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, T. J. Kippenberg. Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys., 5, 909-914(2009).

    [39] R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, T. J. Kippenberg. Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing. Phys. Rev. Appl., 5, 054019(2016).

    [40] C. Doolin, B. D. Hauer, P. H. Kim, A. J. R. MacDonald, H. Ramp, J. P. Davis. Nonlinear optomechanics in the stationary regime. Phys. Rev. A, 89, 053838(2014).

    [41] G. Brawley, M. Vanner, P. Larsen, S. Schmid, A. Boisen, W. Bowen. Non-linear optomechanical measurement of mechanical motion. Nat. Commun., 7, 10988(2016).

    [42] J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452, 72-75(2008).

    [43] H. Jing, D. S. Goldbaum, L. Buchmann, P. Meystre. Quantum optomechanics of a Bose-Einstein antiferromagnet. Phys. Rev. Lett., 106, 223601(2011).

    [44] G. Heinrich, J. G. E. Harris, F. Marquardt. Photon shuttle: Landau-Zener-Stückelberg dynamics in an optomechanical system. Phys. Rev. A, 81, 011801(2010).

    [45] H. Wu, G. Heinrich, F. Marquardt. The effect of Landau-Zener dynamics on phonon lasing. New J. Phys., 15, 123022(2013).

    [46] J. T. Hill. Nonlinear Optics and Wavelength Translation via Cavity-Optomechanics(2013).

    [47] T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, O. Painter. Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X, 5, 041024(2015).

    [48] H.-K. Li, Y.-C. Liu, X. Yi, C.-L. Zou, X.-X. Ren, Y.-F. Xiao. Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling. Phys. Rev. A, 85, 053832(2012).

    [49] H. Wang, Q. Qiao, C. Peng, J. Xia, G. Zhou, Y.-J. Zhao, X.-W. Xu. Two-dimensional optomechanics formed by the graphene sheet and photonic crystal cavity(2018).

    [50] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).

    [51] H. J. Carmichael. An Open Systems Approach to Quantum Optics(1993).

    [52] G. S. Agarwal, S. Huang. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A, 81, 041803(2010).

    [53] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [54] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [55] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 50, 36-42(1997).

    [56] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [57] A. Xuereb, C. Genes, A. Dantan. Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett., 109, 223601(2012).

    [58] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, F. Nori. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 114, 093602(2015).

    [59] J.-M. Pirkkalainen, S. Cho, F. Massel, J. Tuorila, T. Heikkila, P. Hakonen, M. Sillanpaa. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun., 6, 6981(2015).

    [60] M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M. Markham, D. J. Twitchen, M. D. Lukin, O. Painter, M. Lončar. Diamond optomechanical crystals. Optica, 3, 1404-1411(2016).

    [61] H. Zhang, X. Zhao, Y. Wang, Q. Huang, J. Xia. Femtogram scale high frequency nano-optomechanical resonators in water. Opt. Express, 25, 821-830(2017).

    [62] J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, O. Painter. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature, 520, 522-525(2015).

    [63] J. Zhang, B. Peng, S. K. Özdemir, Y.-X. Liu, H. Jing, X.-Y. Lü, Y.-L. Liu, L. Yang, F. Nori. Giant nonlinearity via breaking parity-time symmetry: a route to low-threshold phonon diodes. Phys. Rev. B, 92, 115407(2015).

    [64] I. S. Grudinin, H. Lee, O. Painter, K. J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104, 083901(2010).

    [65] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [66] H. Wang, Z. Wang, J. Zhang, S. K. Özdemir, L. Yang, Y.-X. Liu. Phonon amplification in two coupled cavities containing one mechanical resonator. Phys. Rev. A, 90, 053814(2014).

    [67] H. Lü, S. K. Özdemir, L.-M. Kuang, F. Nori, H. Jing. Exceptional points in random-defect phonon lasers. Phys. Rev. Appl., 8, 044020(2017).

    [68] Y. Jiang, S. Maayani, T. Carmon, F. Nori, H. Jing. Nonreciprocal phonon laser. Phys. Rev. Appl., 10, 064037(2018).

    [69] Y.-L. Zhang, C.-L. Zou, C.-S. Yang, H. Jing, C.-H. Dong, G.-C. Guo, X.-B. Zou. Phase-controlled phonon laser. New J. Phys., 20, 093005(2018).

    [70] J. Zhang, B. Peng, S. Ozdemir, K. Pichler, D. Krimer, G. Zhao, F. Nori, Y.-X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [71] S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, M. Xiao. Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun., 7, 13657(2016).

    [72] K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X, 5, 041020(2015).

    CLP Journals

    [1] Xunwei Xu, Yanjun Zhao, Hui Wang, Aixi Chen, Yu-Xi Liu. Nonreciprocal transition between two nondegenerate energy levels[J]. Photonics Research, 2021, 9(5): 879

    [2] Lei Tang, Jiangshan Tang, Haodong Wu, Jing Zhang, Min Xiao, Keyu Xia. Broad-intensity-range optical nonreciprocity based on feedback-induced Kerr nonlinearity[J]. Photonics Research, 2021, 9(7): 1218

    Xunwei Xu, Yanjun Zhao, Hui Wang, Hui Jing, Aixi Chen. Quantum nonreciprocality in quadratic optomechanics[J]. Photonics Research, 2020, 8(2): 143
    Download Citation