• Photonics Research
  • Vol. 8, Issue 2, 143 (2020)
Xunwei Xu1,*, Yanjun Zhao2, Hui Wang3, Hui Jing4,6, and Aixi Chen1,5,7
Author Affiliations
  • 1Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
  • 2Faculty of Information Technology, College of Microelectronics, Beijing University of Technology, Beijing 100124, China
  • 3Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198, Japan
  • 4Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
  • 5Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 6e-mail: jinghui73@foxmail.com
  • 7e-mail: aixichen@zstu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000143 Cite this Article Set citation alerts
    Xunwei Xu, Yanjun Zhao, Hui Wang, Hui Jing, Aixi Chen, "Quantum nonreciprocality in quadratic optomechanics," Photonics Res. 8, 143 (2020) Copy Citation Text show less
    References

    [1] T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [2] F. Marquardt, S. M. Girvin. Optomechanics. Physics, 2, 40(2009).

    [3] M. Aspelmeyer, P. Meystre, K. Schwab. Quantum optomechanics. Phys. Today, 65, 29-35(2012).

    [4] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [5] M. Metcalfe. Applications of cavity optomechanics. Appl. Phys. Rev., 1, 031105(2014).

    [6] Y.-L. Liu, C. Wang, J. Zhang, Y.-X. Liu. Cavity optomechanics: manipulating photons and phonons towards the single-photon strong coupling. Chin. Phys. B, 27, 024204(2018).

    [7] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).

    [8] H. Qiu, J. Dong, L. Liu, X. Zhang. Energy-efficient on-chip optical diode based on the optomechanical effect. Opt. Express, 25, 8975-8985(2017).

    [9] M. Hafezi, P. Rabl. Optomechanically induced non-reciprocity in microring resonators. Opt. Express, 20, 7672-7684(2012).

    [10] M. Schmidt, S. Kessler, V. Peano, O. Painter, F. Marquardt. Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2, 635-641(2015).

    [11] A. Metelmann, A. A. Clerk. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 5, 021025(2015).

    [12] X.-W. Xu, Y. Li. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems. Phys. Rev. A, 91, 053854(2015).

    [13] K. Fang, M. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [14] X.-W. Xu, Y. Li, A.-X. Chen, Y.-X. Liu. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Phys. Rev. A, 93, 023827(2016).

    [15] A. Metelmann, A. A. Clerk. Nonreciprocal quantum interactions and devices via autonomous feedforward. Phys. Rev. A, 95, 013837(2017).

    [16] L. Tian, Z. Li. Nonreciprocal quantum-state conversion between microwave and optical photons. Phys. Rev. A, 96, 013808(2017).

    [17] M.-A. Miri, F. Ruesink, E. Verhagen, A. Alù. Optical nonreciprocity based on optomechanical coupling. Phys. Rev. Appl., 7, 064014(2017).

    [18] G. Li, X. Xiao, Y. Li, X. Wang. Tunable optical nonreciprocity and a phonon-photon router in an optomechanical system with coupled mechanical and optical modes. Phys. Rev. A, 97, 023801(2018).

    [19] J. Kim, M. C. Kuzyk, K. Han, H. Wang, G. Bahl. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys., 11, 275-280(2015).

    [20] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 6, 6193(2015).

    [21] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [22] F. Ruesink, M.-A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [23] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, C.-H. Dong. Reconfigurable optomechanical circulator and directional amplifier. Nat. Commun., 9, 1797(2018).

    [24] F. Ruesink, J. P. Mathew, M.-A. Miri, A. Alù, E. Verhagen. Optical circulation in a multimode optomechanical resonator. Nat. Commun., 9, 1798(2018).

    [25] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, O. Painter. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 13, 465-471(2017).

    [26] N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, T. J. Kippenberg. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun., 8, 604(2017).

    [27] G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, J. D. Teufel. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X, 7, 031001(2017).

    [28] S. Barzanjeh, M. Wulf, M. Peruzzo, M. Kalaee, P. B. Dieterle, O. Painter, J. M. Fink. Mechanical on-chip microwave circulator. Nat. Commun., 8, 953(2017).

    [29] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. Joannopoulos, M. Vanwolleghem, C. Doerr, H. Renner. What is–and what is not–an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [30] H. Xie, C.-G. Liao, X. Shang, M.-Y. Ye, X.-M. Lin. Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 96, 013861(2017).

    [31] X.-W. Xu, H.-Q. Shi, A.-X. Chen, Y.-X. Liu. Cross-correlation between photons and phonons in quadratically coupled optomechanical systems. Phys. Rev. A, 98, 013821(2018).

    [32] Y. Shi, Z. Yu, S. Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 9, 388-392(2015).

    [33] R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing. Nonreciprocal photon blockade. Phys. Rev. Lett., 121, 153601(2018).

    [34] G. B. Malykin. The Sagnac effect: correct and incorrect explanations. Phys. Usp., 43, 1229-1252(2000).

    [35] H. Lü, Y. Jiang, Y.-Z. Wang, H. Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res., 5, 367-371(2017).

    [36] H. Jing, H. Lü, S. K. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 5, 1424-1430(2018).

    [37] S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. Hassan, H. Jing, F. Nori, D. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 558, 569-572(2018).

    [38] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, T. J. Kippenberg. Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys., 5, 909-914(2009).

    [39] R. Schilling, H. Schütz, A. H. Ghadimi, V. Sudhir, D. J. Wilson, T. J. Kippenberg. Near-field integration of a SiN nanobeam and a SiO2 microcavity for Heisenberg-limited displacement sensing. Phys. Rev. Appl., 5, 054019(2016).

    [40] C. Doolin, B. D. Hauer, P. H. Kim, A. J. R. MacDonald, H. Ramp, J. P. Davis. Nonlinear optomechanics in the stationary regime. Phys. Rev. A, 89, 053838(2014).

    [41] G. Brawley, M. Vanner, P. Larsen, S. Schmid, A. Boisen, W. Bowen. Non-linear optomechanical measurement of mechanical motion. Nat. Commun., 7, 10988(2016).

    [42] J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452, 72-75(2008).

    [43] H. Jing, D. S. Goldbaum, L. Buchmann, P. Meystre. Quantum optomechanics of a Bose-Einstein antiferromagnet. Phys. Rev. Lett., 106, 223601(2011).

    [44] G. Heinrich, J. G. E. Harris, F. Marquardt. Photon shuttle: Landau-Zener-Stückelberg dynamics in an optomechanical system. Phys. Rev. A, 81, 011801(2010).

    [45] H. Wu, G. Heinrich, F. Marquardt. The effect of Landau-Zener dynamics on phonon lasing. New J. Phys., 15, 123022(2013).

    [46] J. T. Hill. Nonlinear Optics and Wavelength Translation via Cavity-Optomechanics(2013).

    [47] T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, O. Painter. Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X, 5, 041024(2015).

    [48] H.-K. Li, Y.-C. Liu, X. Yi, C.-L. Zou, X.-X. Ren, Y.-F. Xiao. Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling. Phys. Rev. A, 85, 053832(2012).

    [49] H. Wang, Q. Qiao, C. Peng, J. Xia, G. Zhou, Y.-J. Zhao, X.-W. Xu. Two-dimensional optomechanics formed by the graphene sheet and photonic crystal cavity(2018).

    [50] C. W. Gardiner, M. J. Collett. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A, 31, 3761-3774(1985).

    [51] H. J. Carmichael. An Open Systems Approach to Quantum Optics(1993).

    [52] G. S. Agarwal, S. Huang. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A, 81, 041803(2010).

    [53] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [54] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [55] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 50, 36-42(1997).

    [56] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [57] A. Xuereb, C. Genes, A. Dantan. Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett., 109, 223601(2012).

    [58] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, F. Nori. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett., 114, 093602(2015).

    [59] J.-M. Pirkkalainen, S. Cho, F. Massel, J. Tuorila, T. Heikkila, P. Hakonen, M. Sillanpaa. Cavity optomechanics mediated by a quantum two-level system. Nat. Commun., 6, 6981(2015).

    [60] M. J. Burek, J. D. Cohen, S. M. Meenehan, N. El-Sawah, C. Chia, T. Ruelle, S. Meesala, J. Rochman, H. A. Atikian, M. Markham, D. J. Twitchen, M. D. Lukin, O. Painter, M. Lončar. Diamond optomechanical crystals. Optica, 3, 1404-1411(2016).

    [61] H. Zhang, X. Zhao, Y. Wang, Q. Huang, J. Xia. Femtogram scale high frequency nano-optomechanical resonators in water. Opt. Express, 25, 821-830(2017).

    [62] J. D. Cohen, S. M. Meenehan, G. S. MacCabe, S. Gröblacher, A. H. Safavi-Naeini, F. Marsili, M. D. Shaw, O. Painter. Phonon counting and intensity interferometry of a nanomechanical resonator. Nature, 520, 522-525(2015).

    [63] J. Zhang, B. Peng, S. K. Özdemir, Y.-X. Liu, H. Jing, X.-Y. Lü, Y.-L. Liu, L. Yang, F. Nori. Giant nonlinearity via breaking parity-time symmetry: a route to low-threshold phonon diodes. Phys. Rev. B, 92, 115407(2015).

    [64] I. S. Grudinin, H. Lee, O. Painter, K. J. Vahala. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104, 083901(2010).

    [65] H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [66] H. Wang, Z. Wang, J. Zhang, S. K. Özdemir, L. Yang, Y.-X. Liu. Phonon amplification in two coupled cavities containing one mechanical resonator. Phys. Rev. A, 90, 053814(2014).

    [67] H. Lü, S. K. Özdemir, L.-M. Kuang, F. Nori, H. Jing. Exceptional points in random-defect phonon lasers. Phys. Rev. Appl., 8, 044020(2017).

    [68] Y. Jiang, S. Maayani, T. Carmon, F. Nori, H. Jing. Nonreciprocal phonon laser. Phys. Rev. Appl., 10, 064037(2018).

    [69] Y.-L. Zhang, C.-L. Zou, C.-S. Yang, H. Jing, C.-H. Dong, G.-C. Guo, X.-B. Zou. Phase-controlled phonon laser. New J. Phys., 20, 093005(2018).

    [70] J. Zhang, B. Peng, S. Ozdemir, K. Pichler, D. Krimer, G. Zhao, F. Nori, Y.-X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).

    [71] S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, M. Xiao. Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun., 7, 13657(2016).

    [72] K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. H. Devoret. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X, 5, 041020(2015).

    CLP Journals

    [1] Xunwei Xu, Yanjun Zhao, Hui Wang, Aixi Chen, Yu-Xi Liu, "Nonreciprocal transition between two nondegenerate energy levels," Photonics Res. 9, 879 (2021)

    [2] Lei Tang, Jiangshan Tang, Haodong Wu, Jing Zhang, Min Xiao, Keyu Xia, "Broad-intensity-range optical nonreciprocity based on feedback-induced Kerr nonlinearity," Photonics Res. 9, 1218 (2021)