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We propose to achieve nonreciprocal quantum control of photons in a quadratic optomechanical (QOM) system
based on directional nonlinear interactions. We show that by optically pumping the QOM system in one side, the
effective QOM coupling can be enhanced significantly in that side, but not for the other side. This, contrary to the
intuitive picture, allows the emergence of a nonreciprocal photon blockade in such optomechanical devices with
weak single-photon QOM coupling. Our proposal opens up the prospect of exploring and utilizing quantum
nonreciprocal optomechanics, with applications ranging from single-photon nonreciprocal devices to on-chip
chiral quantum engineering. © 2020 Chinese Laser Press
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1. INTRODUCTION

Optomechanical systems can be used to test the foundations
of physics, and have important applications ranging from gravi-
tational wave detections to quantum information processing
(for reviews, see Refs. [1–6]). Recently, optomechanically in-
duced nonreciprocity has been proposed theoretically [7–18]
and demonstrated experimentally [19–28]. Nonreciprocal de-
vices [29], such as isolators and circulators, have drawn an im-
mense amount of interest in the past few years, for their
irreplaceable role in signal processing and communication. An
optomechanical system opens a route for nonreciprocity with
nonlinear interactions [7,8,19,20], inherent non-trivial topol-
ogy [9,21–24], and synthetic magnetism [10–18,25–28].

In this paper, we show that nonreciprocity can be realized
in a whispering-gallery-mode (WGM) optomechanical system
with quadratic optomechanical (QOM) coupling for quadratic
mechanical-position dependent change in the optical fre-
quency. Specifically, by optically pumping the quadratic WGM
optomechanical system in one side, the effective QOM cou-
pling can be enhanced significantly in that side, but not for
the other side. The directional nonlinear interactions can in-
duce nonreciprocal photon transport. This new possibility,
as far as we know, has not been revealed in previous works.

It has been shown that the QOM systems driven by a strong
optical driving field can generate strong (second-order) nonlinear

photon-phonon interaction, even under weak single-photon op-
tomechanical coupling conditions [30,31]. Nevertheless, we show
here that theWGMoptomechanical system with QOMcoupling
can be used to generate directional nonlinear interactions, which
opens up the prospect of exploring nonreciprocal photon trans-
port based on nonlinearity without the limitations of dynamic
reciprocity [32]. Moreover, we demonstrate that directional non-
linear interactions can not only induce classical nonreciprocity,
but also achieve nonreciprocal quantum control of photons by
manipulating the statistic of the nonreciprocal transport photons.

Recently, a quantum nonreciprocal effect called nonrecipro-
cal photon blockade (PB) was predicted theoretically [33] in a
spinning Kerr resonator [34–37], that PB can emerge when the
resonator is driven in one direction but not the other. Different
from the nonreciprocal PB induced by the Fizeau–Sagnac drag
[33], which relies on the condition of strong single-photon
nonlinearity, here we show that the nonreciprocal PB can also
be explored even with weak single-photon QOM coupling.
Our proposal provides a feasible method to realize nonrecipro-
cal photon blockade.

We note that the WGM optomechanical system has already
been used for nonreciprocity with inherent non-trivial topology
[9,21–24]. However, the WGM optomechanical systems with
linear mechanical-position dependent change in the optical fre-
quency (i.e., linear optomechanical coupling) can only enhance
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linear photon-phonon interaction, which cannot be used to
observe nonreciprocal PB. Our work provides not only a
new platform (quadratic WGM optomechanics) but a new
approach (i.e., directional nonlinear interaction) to designing
nonreciprocal single-photon devices for backaction-immune
quantum communication and chiral quantum photonics.

2. MODEL AND HAMILTONIAN

We note that the cavity frequency of a WGM optomechanical
system is almost linearly proportional to the mechanical posi-
tion [38,39], even though the effects of QOM coupling have
also been observed in experiments [40,41]. The QOM cou-
pling can facilitate nondestructive measurements of the energy
of the mechanical oscillator [42,43], which is instead impos-
sible for a system with linear optomechanical coupling. We
present a scheme to generate QOM interactions in the normal
optical modes of a WGM optomechanical system by eliminat-
ing the linear optomechanical couplings [44–47].

We consider a near-field cavity optomechanical setup con-
sisting of one mechanical resonator optomechanically coupling
to two optical resonators (j � 1, 2) via the optical evanescent
field, with each optical resonator supporting two degenerate
clockwise (CW) and counter-clockwise (CCW) travelling-
wave WGMs, as shown in Figs. 1(a) and 1(b). The model can
be described by the optomechanical interaction Hamiltonian

H om �
X
j�1, 2

X
λ�cw, ccw

�ω0 � �−1�jg0q�a†j,λaj,λ

� J�a1,ccwa†2,cw � a1,cwa
†
2,ccw �H:c:�

� 1

2
ωm�q2 � p2�, (1)

where aj,λ and a†j,λ (j � 1, 2 and λ � cw, ccw) are the annihi-
lation and creation operators of the optical modes with fre-
quency ω0, and q and p are the dimensionless displacement
and momentum operators of the mechanical resonator with fre-
quency ωm. As shown in Figs. 1(a) and 1(a), the mechanical
resonator is placed at the middle of the gap of the two
WGM resonators, so that the mechanical mode couples to
the two WGM optical modes with linear optomechanical
coupling of equal magnitude g0 but opposite signs. Due to
the tunneling coupling J between the optical modes, there
is an avoided crossing for the optical resonance frequency,
ω��q� � ω0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � �g0q�2

p
, as shown in Figs. 1(c) and

1(d). We assume that the optical mode aj,λ is coupled to a
waveguide (port j) with strength γc , and the damping rate
of mechanical resonator q is γm. This theoretical model may
also be realized with a membrane suspended on WGM micro-
cavities [48] or photonic-crystal microcavities [49].

Following the approach in Refs. [44–47] (see Appendix A
for more details), where jJj ≫ ωm is assumed such that q can
be treated as a quasi-static variable, the Hamiltonian can be
diagonalized quasi-statically as

H om ≈ �ω� � gq2��a†L,�aL,� � a†R,�aR,��
� �ω− − gq2��a†L,−aL,− � a†R,−aR,−�

� 1

2
ωm�q2 � p2� (2)

for normal modes aR,� ≈ �a1,cw � a2,ccw�∕
ffiffiffi
2

p
and aL,� ≈

�a1,ccw � a2,cw�∕
ffiffiffi
2

p
with eigenfrequencies ω��q� ≈ ω0 �

� J � gq2� and single-photon QOM coupling g ≡ g20∕�2J�.
As already shown in the experiment [47], when the tunnel-

ing coupling between the optical modes is strong, i.e., J > γc ,
the transmission spectrum of a laser probe through the coupled
optical modes features resonance dips at the normal resonance
frequencies ω� � ω0 � J , not at the bare optical resonance
frequencies ω0. That is to say, the normal modes are coupled
to the external waveguides and can be used to describe the
input–output characteristic of the coupled optical modes sys-
tem. Specifically, the normal modes aL,� and aR,� are coupled
to both of the ports with strength γc∕2, respectively, and the
total damping rates are γc .

We can choose either pair of degenerated quasi-static nor-
mal optical modes (aL,� and aR,�, or aL,− and aR,−), to generate
strong nonlinear interaction for a few photons travelling in
one direction, but not in the reverse direction. Without loss
of generality, the two optical modes are denoted as aL and aR ,
with frequency ωa � ω� or ω−, for photons travelling from
port 1 to port 2 and the opposite direction, respectively. For
example, to enhance the nonlinear optomechanical coupling
between the optical mode aL and the mechanical resonator
b, the optical mode aL is pumped by a strong field with am-
plitude Ω and frequency ωL ∼ ωa − 2ωm. In the rotating refer-
ence frame with the optical frequency ωL, the system can be
described by

H om�driv � �Δa � gq2��a†LaL � a†RaR� �
1

2
ωm�q2 � p2�

�Ωa†L �ΩaL, (3)

(a) (b)

(c) (d)

Fig. 1. (a), (b) Schematic diagram for generating QOM coupling,
where a mechanical nanostring oscillator is placed between two
whispering gallery mode (WGM) resonators. (c), (d) Dispersion of
the optical modes as a function of the displacement.
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with detuning Δa � ωa − ωL. Under the strong driving condi-
tion Ω ≫ γc , we perform the displacement transformations:
aL → αL � aL, aR → αR � aR , q → qs � q, and p → ps � p,
where αL, αR , qs, and ps are the steady state values, and aL,
aR , q, and p (on the right side of the arrow) are the quantum
fluctuation operators. Adopting the standard linearization tech-
nique (see Appendix B), an effective Hamiltonian [30,31] for
the quantum fluctuation operators is obtained as

H 0
eff � Δa�a†LaL � a†RaR� � ω 0

mb†b� Ga†Lb
2 � G	aLb†2,

(4)

where ω 0
m � ωm � gjαLj2 is the effective mechanical fre-

quency, and G � gαL∕2 is the effective (second-order) nonlin-
ear coupling strength between the optical and mechanical
modes. Without loss of generality, G is assumed to be real
in the following.

To investigate the system’s response behavior to a weak
probe field, a weak field with amplitude ε ≪ γc and frequency
ωp ≈ ωa is input from one of the ports. In the rotating refer-
ence frame with the unitary operator R 0�t� � exp�iδ�a†LaL �
a†RaR � b†b∕2�t �, the total Hamiltonian is given by H tot �
H eff �H probe, where

H eff � Δa†LaL � Δa†RaR � Δmb†b� Ga†Lb
2 � G	aLb†2,

(5)

with detunings δ � ωp − ωL, Δ � Δa − δ, and Δm � ωm �
gjαLj2 − δ∕2 satisfying the condition maxfjΔj, jΔmjg ≪ ωm.
H probe � εa†ξ �H:c: describes the driving of the probe field
with subscript ξ � L for weak field input from port 1 and
ξ � R for weak field input from port 2. The effective
Hamiltonian H eff describes a directional nonlinear interaction
between the optical and mechanical modes. If a probe field
is input from port 1, the enhanced nonlinear interaction G
between aL and b may suppress the excitation of the second
photon under a single-photon resonant condition. In contrast,
by driving from port 2, as there is no strong nonlinear inter-
action between aR and b, the photons are free to cross the
system.

According to the input–output relations [50], we have
a1,in � ε∕

ffiffiffiffiffiffiffiffiffi
γc∕2

p
and a2,out �

ffiffiffiffiffiffiffiffiffi
γc∕2

p
aL (a2,in � ε∕

ffiffiffiffiffiffiffiffiffi
γc∕2

p
and a1,out �

ffiffiffiffiffiffiffiffiffi
γc∕2

p
aR), and then the transmission coefficient

for the weak probe field can be defined by

T 21 ≡
ha†2,outa2,outi
ha†1,ina1,ini

� γ2c
4ε2

ha†LaLi, (6)

for photon transport from port 1 to port 2, and

T 12 ≡
ha†1,outa1,outi
ha†2,ina2,ini

� γ2c
4ε2

ha†RaRi, (7)

for photon transport from port 2 to port 1, where nL ≡ ha†LaLi
and nR ≡ ha†RaRi are the mean photon numbers. The isolation
for probe field transport from port 1 to port 2 is defined by
I ≡ T 21∕T 12. Using the input–output relations, the statistic
properties of the transmitted photons a2,out and a1,out can be
described by the second-order correlation functions in the
steady state (t → ∞) as follows:

g �2�21 �τ� ≡
ha†2,out�t�a†2,out�t � τ�a2,out�t � τ�a2,out�t�i

ha†2,out�t�a2,out�t�i2

� ha†L�t�a†L�t � τ�aL�t � τ�aL�t�i
ha†L�t�aL�t�i2

, (8)

for photon transport from port 1 to port 2, and

g �2�12 �τ� ≡
ha†1,out�t�a†1,out�t � τ�a1,out�t � τ�a1,out�t�i

ha†1,out�t�a1,out�t�i2

� ha†R�t�a†R�t � τ�aR�t � τ�aR�t�i
ha†R�t�aR�t�i2

, (9)

for photon transport from port 2 to port 1.

3. NONRECIPROCAL PB

The transmission coefficients and correlation functions can be
obtained by numerically solving the master equation for the
density matrix ρ of the system [51]

∂ρ
∂t

� −i�H tot, ρ� � γcL�aL�ρ� γcL�aR �ρ
� γm�nth � 1�L�b�ρ� γmnthL�b†�ρ, (10)

where L�o�ρ � oρo† − �o†oρ� ρo†o�∕2 denotes a Lindbland
term for an operator o, and nth is the mean thermal phonon
number, given by the Bose–Einstein statistics nth �
�exp�ℏωm∕kBT � − 1�−1 with the Boltzmann constant kB and
the temperature T of the reservoir at the thermal equilibrium.

In Fig. 2(a), we show the transmission coefficients T 21 for
probe field transport from port 1 to port 2, and T 12 for probe
field transport from port 2 to port 1 versus the detuning Δ∕G.
For T 21, there are two peaks at Δ � � ffiffiffi

2
p

G and one dip at

(a) (b)

(d)(c)

Fig. 2. (a) The transmission coefficients T 21 (solid black curve) and
T 12 (dashed red curve) as a function of the detuning Δ∕G. (b) The
isolation as a function of the detuning Δ∕G. (c) The equal-time
second-order correlation function log10�g �2�ij �0�� (ij � 12, 21) as a
function of the detuning Δ∕G. (d) The second-order correlation func-
tion log10�g�2�21 �τ�� as a function of the normalized time delay γcτ∕�2π�
at detuning Δ � ffiffiffi

2
p

G. The other parameters are Δm � Δ∕2,
G � 3γc , ε � γc∕10, γm � γc∕100, and nth � 0.
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Δ � 0. In contrast, there is only one peak at Δ � 0 for T 12.
Figure 2(b) shows the isolation I � T 21∕T 12 for probe field
transport from port 1 to port 2 as a function of the detuning
Δ∕G. The isolation for the direction 1 → 2 is more than 17 dB
at detuning Δ � � ffiffiffi

2
p

G, and the isolation for the reverse
direction 2 → 1, i.e., Ĩ ≡ T 12∕T 21, is more than 70 dB at
detuning Δ � 0.

To explore the statistic properties of the transmitted
photons, the equal-time second-order correlation function
log10�g�2�ij �0�� (ij � 12, 21) is shown as a function of the detun-
ing Δ∕G in Fig. 2(c). The photon transport from port 2 to
port 1 is coherent in full frequency, i.e., g �2�12 �0� � 1. The

photon transport from port 1 to port 2 exhibits strong
antibunching effect, i.e., g�2�21 �0� ≪ 1, around the detunings
Δ � � ffiffiffi

2
p

G, and exhibits strong bunching effect, i.e.,
g �2�21 �0� ≫ 1, around the detunings Δ � 0 and �2G. The
time duration for nonreciprocal PB at Δ � � ffiffiffi

2
p

G is on
the order of 2π∕�10γc�, as shown in Fig. 2(d).

The peak for T 12 ≈ 1 at detuning Δ � 0 can be understood
by the fact that when the probe field is injected from port 2,
only the (linear) optical mode aR can be excited. Thus the
maximum transmission coefficient is reached for the probe
field in resonance with the optical mode aR , i.e., Δ � 0,
and the transmitted photons keep the statistic properties of
the probe field (a coherent field), i.e., g�2�12 �0� � 1, as there
is no nonlinear interaction in the optical path from port 2
to port 1.

In order to understand the origin of the peak for T 21 ≈ 0.8
around the detuning Δ � � ffiffiffi

2
p

G and the dip for T 21 ≈ 10−7

at Δ � 0, we show energy spectrum (see Appendix C) of
the linearized QOM coupling between optical mode aL and
mechanical resonator b in Fig. 3. Under weak probe condition,
the maximum transmission coefficient T 21 ≈ 0.8 is reached for
the probe field in resonance with the transition j00i → j2�1i,
i.e., Δ � � ffiffiffi

2
p

G, as shown in Fig. 3(a). However, the photon
absorbed in the transition j00i → j2�1i blocks the transition
j2�1i → j4�1i for large detuning, so we have g�2�12 �0� ≪ 1
around the detuning Δ � � ffiffiffi

2
p

G. The dip for T 21 ≈ 10−7

at Δ � 0 arises from the quantum interference between the
transitions j2�1i → j00i and j2−1i → j00i [Fig. 3(b)], in an
equivalent picture as optomechanically induced transparency
[52–54], or electromagnetically induced transparency in lambda-
type three-level atoms [55,56]. Moreover, when Δ � 0, the
transition j00i → j2�1i is suppressed, but the two-photon tran-
sition j00i → j40i is resonant, which induces two-photon tun-
neling from port 1 to point 2, i.e., g �2�21 �0� ≫ 1. Similarly,
g �2�21 �0� ≫ 1 around Δ � �2G is induced by the resonant
transition j00i → j4�i.

(a) (b) (c)

Fig. 3. Schematic energy spectrum of the linearized QOM cou-
pling between optical mode aL and mechanical resonator b, where
j00i ≡ j0, 0i, j10i ≡ j0, 1i, j2�1i ≡ �j1, 0i � j0, 2i�∕ ffiffiffi

2
p

, j3�1i≡
�j1, 1i � j0, 3i�∕ ffiffiffi

2
p

, j40i≡�− ffiffiffi
3

p j2,0i�j0,4i�∕2, j4�1i≡�j2,0i �
2j1,2i� ffiffiffi

3
p j0,4i�∕�2 ffiffiffi

2
p �, and jn,mi represents the Fock state with

n photons in aL and m phonons in b.

(a) (b)

(d)(c)

Fig. 4. (a) Transmission coefficient T 21. (b) The equal-time second-order correlation function log10�g �2�21 �0�� versus the detuning Δ∕G with
different mean thermal phonon number (nth � 0, 0.1, 1). (c) The isolation T 21∕T 12. (d) The equal-time second-order correlation function
log10�g�2�21 �0�� versus the mean thermal phonon number nth with different detuning (Δ � 0,

ffiffiffi
2

p
G,

ffiffiffi
6

p
G). The other parameters are the same

as in Fig. 2.
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We now discuss the effect of thermal phonons on the
nonreciprocal PB. Figures 4(a) and 4(b) show the transmission
coefficient T 21 and the equal-time second-order correlation
function log10�g �2�21 �0�� versus the detuning Δ∕G with a differ-
ent mean thermal phonon number (nth � 0, 0.1, 1). Thermal
phonons have little influence on the transmission coefficient
T 21 around Δ � � ffiffiffi

2
p

G, but have great effect on the trans-
mission coefficient T 21 around Δ � 0. Thermal phonons
have great effect on the second-order correlation function
log10�g�2�21 �0�� around Δ � 0 and � ffiffiffi

2
p

G.
The isolation T 21∕T 12 and the second-order correlation

function log10�g �2�21 �0�� versus the mean thermal phonon number
nth are shown in Figs. 4(c) and 4(d) with detuning Δ � 0,ffiffiffi
2

p
G,

ffiffiffi
6

p
G. The isolation T 21∕T 12 around Δ � ffiffiffi

2
p

G is
robust against the thermal phonons, but the antibunching
effect of the transport photons becomes much weaker for greater
thermal phonons. Both the isolation T 21∕T 12 and second-order
correlation function log10�g �2�21 �0�� around Δ � 0 are sensitive
to the mean thermal phonon number nth, and this quality
may be used in accurate temperature measurement at ultra-
low temperature.

More interestingly, two peaks appear around Δ � �
ffiffiffi
6

p
G

in the transmission coefficient T 21, and the isolation T 21∕T 12

can be improved with a larger thermal phonon number nth.
This abnormal effect is induced by the phonon states, e.g., j10i
in Fig. 3(c). As the temperature increases, the population prob-
ability in phonon state j10i increases, and the transitions of
j10i → j3�1i with resonance frequency Δ � �

ffiffiffi
6

p
G become

remarkable gradually, which induces the increasing peaks of
the transmission coefficient T 21 (or the isolation T 21∕T 12)
around Δ � �

ffiffiffi
6

p
G.

4. DISCUSSIONS AND CONCLUSIONS

Let us now discuss the experimental requirements for our pro-
posal. Considering the parameters from a recent near-field WGM
optomechanical experiment [39]: g0 ∼ 2π × �10–100� kHz,
γc ∼ 2π × �100–1000� MHz, and J ≈ 2π × 1000 MHz for
strong coupling, we have QOM coupling g∕2π ∼ 10 Hz, which
is too weak to realize G � gαL∕2 > γc . However, many schemes
have been proposed to enhance the optomechanical coupling g0
in recent years, such as by using the collective mechanical modes
in scatter arrays [57], the squeezed cavity mode [58], or the
Josephson effect for electromechanical systems [59]. The optome-
chanical coupling g0 can be enhanced by several orders of mag-
nitude and the strong coupling regime (g0 > γc) can even be
approached [57–59]. Furthermore, the frequency range of the
SiN nanostring oscillators in the near-field cavity optomechanical
setup is about 0.1–10 MHz [38–41], which is too low to observe
nonreciprocal PB. One possible solution is replaying the SiN
nanostring oscillator with an optomechanical crystal nanobeam,
as optomechanical crystal nanobeams with GHz mechanical
modes have been designed and demonstrated recently [60,61].
Moreover, the thermal phonons have important influence on the
nonreciprocal PB, and the thermal effect can be suppressed for
higher frequency mechanical mode.

In addition, there are two driving fields coupling to the sys-
tem with frequencies ωL ∼ ωa − 2ωm and ωp ∼ ωa, and the

strengths Ω ≫ ε. In order to detect the photon correlation in-
duced by the weak probe field, we should spectrally filter out
the strong optical driving field at frequency ωL under the
condition ωa − ωL ≫ fγc ,Gg. A similar method has already
been used to measure correlations of phonons in a recent
experiment [62].

In summary, we have shown that theWGMoptomechanical
system with QOM coupling can be used to obtain direc-
tional nonlinear interactions and observe nonreciprocal PB.
In addition, the thermal phonons have important influence
on the nonreciprocal PB, especially on the statistic properties
of the transport photons, and this quality may be used in
temperature sensing at ultra-low temperature. Moreover, this
work can be extended to study phonon manipulation in
double-cavity optomechanics, e.g., nonreciprocal phonon
blockades [63], nonreciprocal phonon lasers [64–70], nonre-
ciprocal photon-phonon entanglements and quantum trans-
fers. Directional nonlinear interaction can also be applied in
the high-Q microtoroid resonator with phase-matched para-
metric amplification [71] or superconducting microwave cir-
cuit with Josephson parametric converters [72] to achieve
nonreciprocal quantum control of photons. Our proposal pro-
vides a new routine towards the realization of on-chip quantum
nonreciprocal devices, backaction-immune quantum measure-
ment, and chiral quantum physics.

APPENDIX A: QUADRATIC OPTOMECHANICAL
COUPLING

To realize quantum nonreciprocality in optomechanics, we con-
sider a near-field cavity optomechanical setup consisting of one
mechanical resonator optomechanical coupling to two optical
resonators (j � 1, 2) via the optical evanescent field, with each
optical resonator supporting two degenerate clockwise (CW) and
counter-clockwise (CCW) travelling-wave whispering-galley-
modes (WGMs). The model can be described by the optome-
chanical interaction Hamiltonian

H om �
�
a†1,ccw a†2,cw

��ω0 − g0q J

J ω0 � g0q

�� a1,ccw
a2,cw

�

�
�
a†1,cw a†2,ccw

��ω0 − g0q J

J ω0 � g0q

�� a1,cw
a2,ccw

�

� 1

2
ωm�q2 � p2�, (A1)

where aj,λ and a†j,λ (j � 1, 2 and λ � cw, ccw) are the annihi-
lation and creation operators of the optical modes with fre-
quency ω0, J is the tunneling amplitude between the optical
modes, q and p are the dimensionless displacement and
momentum operators of the mechanical resonator with fre-
quency ωm, and g0 is the linear optomechanical coupling
strength between the mechanical resonator and optical modes.
We assume that the optical mode aj,λ is coupled to a waveguide
(port j) with strength γc , and the damping rate of mechanical
resonator q is γm.
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The Hamiltonian in Eq. (A1) can be diagonalized as

H om �
�
a†L,� a†L,−

��ω��q� 0

0 ω−�q�

�� aL,�
aL,−

�

�
�
a†R,� a†R,−

��ω��q� 0

0 ω−�q�

��
aR,�
aR,−

�

� 1

2
ωm�q2 � p2�, (A2)

in the normal modes basis,

aL,� � 1

D�

�
Ja1,ccw �

�
g0q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � �g0q�2

q �
a2,cw

�
(A3)

and

aR,� � 1

D�

�
Ja1,cw �

�
g0q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � �g0q�2

q �
a2,ccw

�
,

(A4)

with

D2
� � J2 �

�
g0q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � �g0q�2

q �
2

, (A5)

and eigenfrequencies

ω��q� � ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 � �g0q�2

q
: (A6)

Moreover, jJj ≫ g0q is assumed [44–47] such that we can
Taylor-expand the eigenfrequencies in Eq. (A6) as

ω��q� ≈ ω� � g20
2J

q2, (A7)

with frequencies ω� ≡ ω��0� � ω0 � J , and the quasi-
static Hamiltonian in Eq. (A2) is given approximately by
Eq. (2) in the main text with quadratic optomechanical cou-
pling g ≡ g20∕�2J�, and quasi-static normal optical modes,
aL,� ≈ �a1,ccw � a2,cw�∕

ffiffiffi
2

p
and aR,� ≈ �a1,cw � a2,ccw�∕

ffiffiffi
2

p
.

APPENDIX B: LINEARIZED OPTOMECHANICAL
HAMILTONIAN

We consider a pair of degenerated quasi-static normal optical
modes (aL,� and aR,�, or aL,− and aR,−), to generate strong non-
linear interaction for a few photons travelling in one direction,
but not in the reverse direction. Without loss of generality, the
two optical modes are denoted as aL and aR , with frequency
ωa � ω� or ω−, for photons travelling from port 1 to port 2
and the opposite direction, respectively. For example, to en-
hance the nonlinear optomechanical coupling between the op-
tical mode aL and the mechanical resonator, the optical mode
aL is pumped by a strong field with amplitude Ω and frequency
ωL ∼ ωa − 2ωm. In the rotating reference frame with the optical
frequency ωL, the system can be described by Eq. (3) in the
main text with detuning Δa � ωa − ωL.

Under strong driving condition Ω ≫ γc , we perform the
displacement transformations: aL → αL � aL, aR → αR � aR ,
q → qs � q, and p → ps � p, where αL, αR , qs, and ps are the
steady state values, and aL, aR , q, and p (on the right side of
the arrow) are the quantum fluctuation operators. The steady

state values αL, αR , qs, and ps can be obtained by the equations
of motions yielding

αL �
−i2Ω

γc � i2Δa
(B1)

and

αR � qs � ps � 0: (B2)

The operators q and p for the mechanical resonator can be
written in terms of phonon creation and annihilation operators
as q � �b† � b�∕ ffiffiffi

2
p

, p � i�b† − b�∕ ffiffiffi
2

p
, and the effective

Hamiltonian for the quantum fluctuation operators reads

H 0
eff � Δaa

†
LaL � Δaa

†
RaR � ωmb†b

� g
2
�jαLj2 � a†LaL � a†RaR��b† � b�2

� g
2
�αLa†L � α	LaL��b† � b�2: (B3)

We assume that the optical driving field is strong enough
so we have jαLj2 ≫ ha†LaLi ∼ ha†RaRi, and so that the term
g�a†LaL � a†RaR��b† � b�2 in the above equation can be
neglected safely. For Δa ∼ 2ωm ≫ jgαLj∕2, the effective
Hamiltonian can be further simplified by rotating-wave
approximation and neglecting the high frequency terms
[30,31], e.g., b2 and ab2. Then, we get Eq. (4) in the main
text, where ω 0

m � ωm � gjαLj2 is the effective mechanical fre-
quency, and G � gαL∕2 is the effective nonlinear coupling
strength between the optical and mechanical modes.

APPENDIX C: ENERGY SPECTRUM

In this appendix, we will show the energy spectrum of the
effective Hamiltonian in the diagonal basis under the condi-
tion Δ � 2Δm, and similar results are shown in Refs. [30,31].
In the noncoupling basis, jn,mi represents the Fock state
with n photons in aL and m phonons in b. It is clear that
the vacuum state

j00i ≡ j0, 0i (C1)

and the single-phonon state

j10i ≡ j0, 1i, (C2)

are decoupled from the other states. The degenerate states j1, 0i
and j0, 2i are coupled with strengh ffiffiffi

2
p

G, so the eigenstates are

j2�1i ≡
1ffiffiffi
2

p �j1, 0i � j0, 2i�, (C3)

with energy splitting

Δ2,� � �
ffiffiffi
2

p
G: (C4)

The degenerate states j1, 1i and j0, 3i are coupled with
strength

ffiffiffi
6

p
G, so the eigenstates are

j3�1i ≡
1ffiffiffi
2

p �j1, 1i � j0, 3i�, (C5)

with energy splitting

Δ3,� � �
ffiffiffi
6

p
G: (C6)

The states j2, 0i, j1, 2i, and j0, 4i are degenerate, where
j2, 0i and j1, 2i are coupled with strength 2G, and j0, 4i
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and j1, 2i are coupled with strength 2
ffiffiffi
3

p
G, so the eigenstates

are

j40i ≡
1

2

�
−

ffiffiffi
3

p
j2, 0i � j0, 4i

�
, (C7)

j4�1i ≡
1

2
ffiffiffi
2

p
�
j2, 0i � 2j1, 2i �

ffiffiffi
3

p
j0, 4i

�
, (C8)

with energy splitting

Δ4,0 � 0, (C9)

Δ4,� � �4G: (C10)

The schematic energy spectrum in the diagonal basis is
given in Fig. 3.
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