• Photonics Research
  • Vol. 8, Issue 1, 57 (2020)
O. V. Borovkova1、*, D. O. Ignatyeva1、2, S. K. Sekatskii3, A. Karabchevsky4、5, and V. I. Belotelov1、2
Author Affiliations
  • 1Russian Quantum Center, Skolkovo, Moscow 143025, Russia
  • 2Lomonosov Moscow State University, Moscow 119991, Russia
  • 3Laboratoire de Physique de la Matière Vivante, IPHYS, EPFL, 1015 Lausanne, Switzerland
  • 4School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
  • 5e-mail: alinak@bgu.ac.il
  • show less
    DOI: 10.1364/PRJ.8.000057 Cite this Article Set citation alerts
    O. V. Borovkova, D. O. Ignatyeva, S. K. Sekatskii, A. Karabchevsky, V. I. Belotelov. High-Q surface electromagnetic wave resonance excitation in magnetophotonic crystals for supersensitive detection of weak light absorption in the near-infrared[J]. Photonics Research, 2020, 8(1): 57 Copy Citation Text show less
    References

    [1] W. S. Struve. Fundamentals of Molecular Spectroscopy(1989).

    [2] R. Adato, H. Altug. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun., 4, 2154(2013).

    [3] D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, H. Giessen. Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat. Commun., 4, 2237(2013).

    [4] A. Karabchevsky, A. V. Kavokin. Giant absorption of light by molecular vibrations on a chip. Sci. Rep., 6, 21201(2016).

    [5] A. Karabchevsky, A. Katiyi, M. I. M. Abdul Khudus, A. V. Kavokin. Tuning the near-infrared absorption of aromatic amines with photonic microfibers sculptured gold nanoparticles. ACS Photon., 5, 2200-2207(2018).

    [6] A. Katiyi, A. Karabchevsky. Si nanostrip rib-waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared. ACS Sens., 3, 618-623(2018).

    [7] A. Katiyi, A. Karabchevsky. Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy. J. Lightwave Technol., 35, 2902-2908(2017).

    [8] A. Karabchevsky, A. Shalabney. Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton. Proc. SPIE, 9899, 98991T(2016).

    [9] D. R. Dadadzhanov, T. A. Vartanyan, A. Karabchevsky. Differential extinction of vibrational molecular overtone transitions with gold nanorods and its role in surface enhanced near-IR absorption (SENIRA). Opt. Express, 27, 29471-29478(2019).

    [10] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009).

    [11] D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, F. De Angelis. Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horiz., 4, 1153-1157(2019).

    [12] K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, G. Strangi. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater., 15, 621-627(2016).

    [13] J. Homola. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev., 108, 462-493(2008).

    [14] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [15] N. E. Khokhlov, D. O. Ignatyeva, V. I. Belotelov. Plasmonic pulse shaping and velocity control via photoexcitation of electrons in a gold film. Opt. Express, 22, 28019-28026(2014).

    [16] D. O. Ignatyeva, A. P. Sukhorukov. Plasmon beams interaction at interface between metal and dielectric with saturable Kerr nonlinearity. Appl. Phys. A, 109, 813-818(2012).

    [17] D. O. Ignatyeva, A. P. Sukhorukov. Femtosecond-pulse control in nonlinear plasmonic systems. Phys. Rev. A, 89, 013850(2014).

    [18] O. Borovkova, A. Kalish, V. Belotelov. Transverse magneto-optical Kerr effect in active magneto-plasmonic structures. Opt. Lett., 41, 4593-4596(2016).

    [19] O. V. Borovkova, H. Hashim, M. A. Kozhaev, S. A. Dagesyan, A. Chakravarty, M. Levy, V. I. Belotelov. TMOKE as efficient tool for the magneto-optic analysis of ultra-thin magnetic films. Appl. Phys. Lett., 112, 063101(2018).

    [20] O. V. Borovkova, F. Spitzer, V. I. Belotelov, I. A. Akimov, A. N. Poddubny, G. Karczewski, M. Wiater, T. Wojtowicz, A. K. Zvezdin, D. R. Yakovlev, M. Bayer. Transverse magneto-optical Kerr effect at narrow optical resonances. Nanophotonics, 8, 287-296(2019).

    [21] M. Levy, O. V. Borovkova, C. Sheidler, B. Blasiola, D. Karki, F. Jomard, M. A. Kozhaev, E. Popova, N. Keller, V. I. Belotelov. Faraday rotation in iron garnet films beyond elemental substitutions. Optica, 6, 642-646(2019).

    [22] C. A. Herreño-Fierro, E. J. Patiño, G. Armelles, A. Cebollada. Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks. Appl. Phys. Lett., 108, 021109(2016).

    [23] B. Sepúlveda, A. Calle, L. M. Lechuga, G. Armelles. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett., 31, 1085-1087(2006).

    [24] D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, L. M. Lechuga. Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. J. Appl. Phys., 108, 054502(2010).

    [25] N. Maccaferri, K. E. Gregorczyk, T. A. G. de Oliveira, M. Kataja, S. van Dijken, Z. Pirzadeh, A. Dmitriev, J. Åkerman, M. Knez, P. Vavassori. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nat. Commun., 6, 6150(2015).

    [26] S. David, C. Polonschii, C. Luculescu, M. Gheorghiu, S. Gáspár, E. Gheorghiu. Magneto-plasmonic biosensor with enhanced analytical response and stability. Biosens. Bioelectron., 63, 525-532(2015).

    [27] M. G. Manera, E. Ferreiro-Vila, J. M. Garcia-Martin, A. Garcia-Martin, R. Rella. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor. Biosens. Bioelectron., 58, 114-120(2014).

    [28] V. N. Konopsky, E. V. Alieva. Photonic crystal surface waves for optical biosensors. Anal. Chem., 79, 4729-4735(2007).

    [29] D. O. Ignatyeva, P. O. Kapralov, G. A. Knyazev, S. K. Sekatskii, G. Dietler, M. Nur-E-Alam, M. Vasiliev, K. Alameh, V. I. Belotelov. High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications. JETP Lett., 104, 679-684(2016).

    [30] D. O. Ignatyeva, G. A. Knyazev, P. O. Kapralov, G. Dietler, S. K. Sekatskii, V. I. Belotelov. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep., 6, 28077(2016).

    [31] J. Qin, Y. Zhang, X. Liang, C. Liu, C. Wang, T. Kang, H. Lu, L. S. Zhang, P. Zhou, X. Wang, B. Peng, J. Hu, L. Deng, L. Bi. Ultrahigh figure-of-merit in metal-insulator-metal magnetoplasmonic sensors using low loss magneto-optical oxide thin films. ACS Photon., 4, 1403-1412(2017).

    [32] A. M. Merzlikin, E. V. Kuznetsov, A. V. Baryshev. Magneto-optical device based on polarization sensitivity for perspective biosensing applications. IEEE Sens. J., 18, 5732-5738(2018).

    [33] B. Caballero, A. Garcia-Martin, J. C. Cuevas. Hybrid magnetoplasmonic crystal boost performance of nanohole arrays as plasmonic sensors. ACS Photon., 3, 203-208(2016).

    [34] A. Zvezdin, V. Kotov. Modern Magnetooptics and Magnetooptical Materials(1997).

    [35] S. K. Sekatskii, S. Smirnov, G. Dietler, M. N. E. Alam, M. Vasiliev, K. Alameh. Photonic crystal-supported long-range surface plasmon-polaritons propagating along high-quality silver nanofilms. Appl. Sci., 8, 248(2018).

    [36] V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, G. Dietler. Photonic crystal biosensor based on optical surface waves. Sensors, 13, 2566-2578(2013).

    [37] E. Rostova, C. B. Diba, G. Dietler, S. Sekatskii. Label-free optical biosensor based on photonic crystal reveals binding kinetics of antibodies to living bacterial cells E. coli. Biosensors, 6, 52(2016).

    [38] V. N. Konopsky. Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces. New J. Phys., 12, 093006(2010).

    [39] H. H. Li. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 9, 561-658(1980).

    [40] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).

    [41] T. J. Bright, J. I. Watjen, Z. M. Zhang, C. Muratore, A. A. Voevodin, D. I. Koukis, D. B. Tanner, D. J. Arenas. Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films. J. Appl. Phys., 114, 083515(2013).

    [42] J. R. DeVore. Refractive indices of rutile and sphalerite. J. Opt. Soc. Am., 41, 416-419(1951).

    [43] S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, K. Uyeda. Magnetooptical properties of cerium-substituted yttrium iron garnet single crystals for magnetic-field sensor. Sens. Actuators A Phys., 105, 293-296(2003).

    O. V. Borovkova, D. O. Ignatyeva, S. K. Sekatskii, A. Karabchevsky, V. I. Belotelov. High-Q surface electromagnetic wave resonance excitation in magnetophotonic crystals for supersensitive detection of weak light absorption in the near-infrared[J]. Photonics Research, 2020, 8(1): 57
    Download Citation