• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170609 (2019)
Zaijin Fang1, Shupei Zheng1, Baiou Guan1、*, and Jianrong Qiu2、**
Author Affiliations
  • 1 Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 511443, China
  • 2 College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP56.170609 Cite this Article Set citation alerts
    Zaijin Fang, Shupei Zheng, Baiou Guan, Jianrong Qiu. Research Progress in Glass Ceramic Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170609 Copy Citation Text show less
    References

    [1] Nilsson J, Payne D N. High-power fiber lasers[J]. Science, 332, 921-922(2011).

    [2] Chen H, Jin C, Huang B et al. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications[J]. Nature Photonics, 10, 529-533(2016).

    [3] Correa R A, Lopez E A et al. . Ultra-high-density spatial division multiplexing with a few-mode multicore fibre[J]. Nature Photonics, 8, 865-870(2014).

    [4] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [5] Wang W C, Zhou B, Xu S H et al. Recent advances in soft optical glass fiber and fiber lasers[J]. Progress in Materials Science, 101, 90-171(2019).

    [6] Zhou S F, Li C Y, Yang G et al. Self-limited nanocrystallization-mediated activation of semiconductor nanocrystal in an amorphous solid[J]. Advanced Functional Materials, 23, 5436-5443(2013).

    [7] Lin C G, Bocker C, Rüssel C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation[J]. Nano Letters, 15, 6764-6769(2015).

    [8] Li X Y, Chen D Q, Huang F et al. Phase-selective nanocrystallization of NaLnF4 in aluminosilicate glass for random laser and 940 nm LED-excitable upconverted luminescence[J]. Laser & Photonics Reviews, 12, 1800030(2018).

    [9] Zhou S F, Jiang N, Wu B T et al. Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials[J]. Advanced Functional Materials, 19, 2081-2088(2009).

    [10] Dong G P, Wu G B, Fan S H et al. Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses[J]. Journal of Non-Crystalline Solids, 383, 192-195(2014).

    [11] Takahashi Y, Benino Y, Fujiwara T et al. Optical second order nonlinearity of transparent Ba2TiGe2O8 crystallized glasses[J]. Applied Physics Letters, 81, 223-225(2002).

    [12] Tick P A, Borrelli N F, Reaney I M. The relationship between structure and transparency in glass-ceramic materials[J]. Optical Materials, 15, 81-91(2000).

    [13] Tick P A. Are low-loss glass-ceramic optical waveguides possible?[J]. Optics Letters, 23, 1904-1905(1998).

    [14] Samson B N, Tick P A, Borrelli N F. Efficient neodymium-doped glass-ceramic fiber laser and amplifier[J]. Optics Letters, 26, 145-147(2001).

    [15] Reben M, Wasylak J, Dorosz D. Tellurite glasses for optical fibre fabrication[J]. Proceedings of SPIE, 7120, 71200I(2008).

    [16] Augustyn E. elechower M, Stró D, et al. The microstructure of erbium-ytterbium co-doped oxyfluoride glass-ceramic optical fibers [J]. Optical Materials, 34, 944-950(2012).

    [17] Kang S L, Fang Z J, Huang X J et al. Precisely controllable fabrication of Er 3+-doped glass ceramic fibers: novel mid-infrared fiber laser materials [J]. Journal of Materials Chemistry C, 5, 4549-4556(2017).

    [18] Peng W C, Fang Z J, Ma Z J et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb 3+-Er 3+ codoped CaF2 nanocrystals [J]. Nanotechnology, 27, 405203(2016).

    [19] Downey K E, Samson B N, Beall G H et al. Cr 4+∶forsterite nanocrystalline glass-ceramic fiber . [C]//Conference on Lasers Electro-Optics, May 6-10, 2001, Baltimore, Maryland United States. Washington, D.C.: OSA, CTuP1(2001).

    [20] Samson B N, Pinckney L R, Wang J et al. Nickel-doped nanocrystalline glass-ceramic fiber[J]. Optics Letters, 27, 1309-1311(2002).

    [21] Fang Z J, Zheng S P, Peng W C et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment [J]. Optics Express, 23, 28258-28263(2015).

    [22] Fang Z J, Zheng S P, Peng W C et al. Fabrication and characterization of glass-ceramic fiber-containing Cr 3+-doped ZnAl2O4 nanocrystals [J]. Journal of the American Ceramic Society, 98, 2772-2775(2015).

    [23] Chen J J, Shi Z, Zhou S F et al. Optically active materials: local chemistry engineering in doped photonic glass for optical pulse generation[J]. Advanced Optical Materials, 7, 1970022(2019).

    [24] Yu Y Z, Fang Z J, Ma C S et al. Mesoscale engineering of photonic glass for tunable luminescence[J]. NPG Asia Materials, 8, e318(2016).

    [25] Hreibi A, Gérôme F, Auguste J L et al. Semiconductor-doped liquid-core optical fiber[J]. Optics Letters, 36, 1695-1697(2011).

    [26] Meissner K E, Holton C, Spillman W B. Jr. Optical characterization of quantum dots entrained in microstructured optical fibers[J]. Physica E: Low-Dimensional Systems and Nanostructures, 26, 377-381(2005).

    [27] Yu H C Y, Argyros A, Barton G et al. . Quantum dot and silica nanoparticle doped polymer optical fibers[J]. Optics Express, 15, 9989-9994(2007).

    [28] Pang F F, Sun X L, Guo H R et al. A PbS quantum dots fiber amplifier excited by evanescent wave[J]. Optics Express, 18, 14024-14030(2010).

    [29] Watekar P R, Ju S, Han W T. Bend insensitive optical fiber with ultralow bending loss in the visible wavelength band[J]. Optics Letters, 34, 3830-3832(2009).

    [30] Huang X J, Fang Z J, Peng Z X et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers[J]. Optics Express, 25, 19691-19700(2017).

    [31] Huang X J, Fang Z J, Kang S L et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. Journal of Materials Chemistry C, 5, 7927-7934(2017).

    [32] Takahashi Y, Kitamura K, Benino Y et al. Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass[J]. Applied Physics Letters, 86, 091110(2005).

    [33] Fang Z J, Xiao X S, Wang X et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Scientific Reports, 7, 44456(2017).

    Zaijin Fang, Shupei Zheng, Baiou Guan, Jianrong Qiu. Research Progress in Glass Ceramic Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170609
    Download Citation