Chunhong Gao, Linqiang Wang, Kewen Zhou, Wei Yang, Li Zhou, Xiaojun Yin, Xinxin Ban, Shusheng Pan. Research progress of high-performance PeLEDs based on organic light-emitting materials (invited)[J]. Infrared and Laser Engineering, 2023, 52(12): 20230630

Search by keywords or author
- Infrared and Laser Engineering
- Vol. 52, Issue 12, 20230630 (2023)
![ABX3 metal halide perovskite general crystal structure. (a) A-type cations occupy lattice corners, B-type cations occupy interstitial sites, and X-type anions occupy lattice face centers; (b) B-type cations cluster around X-type anions to form [BX6]4− structures[27-28]](/richHtml/irla/2023/52/12/20230630/img_1.jpg)
Fig. 1. ABX3 metal halide perovskite general crystal structure. (a) A-type cations occupy lattice corners, B-type cations occupy interstitial sites, and X-type anions occupy lattice face centers; (b) B-type cations cluster around X-type anions to form [BX6]4− structures[27-28]
![(a) Schematic of quasi-2D perovskite structure; (b) Schematic of energy funnel effect[32]](/richHtml/irla/2023/52/12/20230630/img_2.jpg)
Fig. 2. (a) Schematic of quasi-2D perovskite structure; (b) Schematic of energy funnel effect[32]
![(a) Device structure of PeLEDs; (b) Energy level alignment of PeLEDs[13]](/Images/icon/loading.gif)
Fig. 3. (a) Device structure of PeLEDs; (b) Energy level alignment of PeLEDs[13]
![Schematic of interface and region of exciton generating for (a) PeLEDs (n=1); (b) Optimized PeLEDs (n=4). Black solid line represents the interface for exciton generation, and red dashed box represents the region for exciton generation[14]](/Images/icon/loading.gif)
Fig. 4. Schematic of interface and region of exciton generating for (a) PeLEDs (n =1); (b) Optimized PeLEDs (n =4). Black solid line represents the interface for exciton generation, and red dashed box represents the region for exciton generation[14]
![(a) Schematic of PeLEDs device structure; (b) Energy level alignment of PeLEDs[15]](/Images/icon/loading.gif)
Fig. 5. (a) Schematic of PeLEDs device structure; (b) Energy level alignment of PeLEDs[15]
![Exciton interface recombination effect. (a) PEDOT: PSS/CsPbBr3; (b) PEDOT: PSS/TAPC/CsPbBr3[15]](/Images/icon/loading.gif)
Fig. 6. Exciton interface recombination effect. (a) PEDOT: PSS/CsPbBr3; (b) PEDOT: PSS/TAPC/CsPbBr3[15]
![(a) Energy level alignment of PeLEDs; (b) Schematic of exciton energy transfer mechanism in FIrpic: CsPbBr3[16]](/Images/icon/loading.gif)
Fig. 7. (a) Energy level alignment of PeLEDs; (b) Schematic of exciton energy transfer mechanism in FIrpic: CsPbBr3[16]
![Diagram of exciton energy transfer mechanism in TmPyPB:FIrpic: CsPbBr3 film (red solid arrow indicates Förster energy transfer process, dashed arrow indicates Dexter energy transfer process)[17]](/Images/icon/loading.gif)
Fig. 8. Diagram of exciton energy transfer mechanism in TmPyPB:FIrpic: CsPbBr3 film (red solid arrow indicates Förster energy transfer process, dashed arrow indicates Dexter energy transfer process)[17]
![Schematic of energy transfer processes between the CsPbBr3 emission layer and the TmPyPB: FIrpic composite exciton blocking layer(dashed arrows indicate Dexter energy transfer and solid arrows indicate Förster energy transfer)[18]](/Images/icon/loading.gif)
Fig. 9. Schematic of energy transfer processes between the CsPbBr3 emission layer and the TmPyPB: FIrpic composite exciton blocking layer(dashed arrows indicate Dexter energy transfer and solid arrows indicate Förster energy transfer)[18]
![Molecular structure of thermally activated delayed fluorescence materials (TADF). (a) 2CzPN (traditional TADF); (b) Cz-3CzCN (TADF dendrimer); (c) Cz-4CzCN (TADF dendrimer); (d) t-DABNA-dtB (TADF dendrimer); (e) P-Cz5CzCN (TADF polymer)[19-24]](/Images/icon/loading.gif)
Fig. 10. Molecular structure of thermally activated delayed fluorescence materials (TADF). (a) 2CzPN (traditional TADF); (b) Cz-3CzCN (TADF dendrimer); (c) Cz-4CzCN (TADF dendrimer); (d) t-DABNA-dtB (TADF dendrimer); (e) P-Cz5CzCN (TADF polymer)[19-24]
![Schematic diagram of energy transfer mechanism in CsPbBr3: 2CzPN film[19-20]](/Images/icon/loading.gif)
![Schematic diagram of energy transfer mechanism between PEA2Csn−1PbnBr3n+1 and Cz-3CzCN[21-22]](/Images/icon/loading.gif)
Fig. 12. Schematic diagram of energy transfer mechanism between PEA2Csn −1Pbn Br3n +1 and Cz-3CzCN[21-22]
![Schematic diagram of phase distribution, carrier transport, and exciton radiative recombination in blue PeLEDs based on (a) PVK and (b) PVK: t-DABNA-dtB as HTLs[23]](/Images/icon/loading.gif)
Fig. 13. Schematic diagram of phase distribution, carrier transport, and exciton radiative recombination in blue PeLEDs based on (a) PVK and (b) PVK: t-DABNA-dtB as HTLs[23]
![(a) Schematic diagram of the distribution of the perovskite, additives, traps and grain boundary; (b) Schematic diagram of charge injection, exciton recombination, and energy transfer mechanism in luminescent thin films[24]](/Images/icon/loading.gif)
Fig. 14. (a) Schematic diagram of the distribution of the perovskite, additives, traps and grain boundary; (b) Schematic diagram of charge injection, exciton recombination, and energy transfer mechanism in luminescent thin films[24]

Set citation alerts for the article
Please enter your email address